Dmitrii1763
?>

Найди произведение одночленов (−4, 2⋅a^2⋅ b^5 ⋅c)^2⋅(−10abc)

Алгебра

Ответы

Максим Павел
(-4,2*a^2* b^5*c)^2*(-10abc)= (17.64a^4b^{10}c^2 )*(-10abc)= \\ =-176.4a^5b^{11}c^3 

Natalya1070

ответ:

x∈(-∞, -1-√11)∪(-2, 2)∪(1+√11, +∞)

объяснение:

|x²-9|> 2|x|+1

рассмотреть все возможные случай:

|x²-9|-2|x|> 1

решим систему неравенств 4 случая:

x²-9-2x> 1,   x²-9≥0, x≥0

-(x²-9)-2x> 1,   x²-9< 0, x≥0

x²-9-2×(-x)> 1, x²-9≥0, x< 0

-(x²-9)-2×(-x)> 1, x²-9< 0, x< 0

решим неравенств относительно x:

x∈(-∞, 1-√11)∪(1+√11, +∞),   x∈(-∞, -3]∪[3, +∞),   x≥0

x∈(-4, 2),   x∈(-3, 3),   x≥0

x∈(-∞, -1-√11)∪(-1+√11, +∞),   x∈(-∞, -3]∪[3, +∞),   x< 0

x∈(-2, 4),   x∈(-3,3),   x< 0

найдем перечисление:

x∈(-∞, 1-√11)∪(1+√11, +∞),   x∈[3, +∞)

x∈(-4, 2),   x∈[0, 3)

x∈(-∞, -1-√11)∪(-1+√11, +∞),   x∈(-∞, -3]

x∈(-2, 4),   x∈(-3, 0)

найдем перечисление:

x∈(1+√11, +∞)

x∈[0, 2)

x∈(-∞, -1-√11)

x∈(-2, 0)

найдем объединение:

x∈(-∞, -1-√11)∪(-2, 2)∪(1+√11, +∞)

madina27821667

№ 2:

при каком значении параметра a уравнение |x^2−2x−3|=a имеет три корня?

введем функцию

y=|x^2−2x−3|

рассмотрим функцию без модуля

y=x^2−2x−3

y=(x−3)(х+1)

при х=3 и х=-1 - у=0

х вершины = 2/2=1

у  вершины = 1-2-3=-4

после применения модуля график отражается в верхнюю полуплоскость

при а=0 - 2 корня (нули х=3 и х=-1)

при 0< а< 4 - 4 корня (2 от исходной параболы, 2 от отображенной части)

при а=4 - 3 корня (2 от исходной параболы, 1 от вершины х=1)

при а> 4 - 2 корня (от исходной параболы)

ответ: 4

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найди произведение одночленов (−4, 2⋅a^2⋅ b^5 ⋅c)^2⋅(−10abc)
Ваше имя (никнейм)*
Email*
Комментарий*