Найдем решения неравенства Ix-5I≤2; -2≤х-6≤2; 4≤х≤8- отрезок длиной 4
Найдем решения неравенства Ix-6I≥1
x-6≥1; х≥7 или х-6≤-1; х≤5; т.е. х∈(-∞;5]∪[7;8]
Из отрезка [4;8] выпадает только отрезок[5;7] длины 2
Используя геометрическое определение вероятности, найдем искомую вероятность, длина решений второго неравенства, которое находится в первом, составляет 2, это сумма длин отрезков [4;5] и [7;8], т.е. число благоприятствующих исходов равно 2, а общее число исходов 4, значит, вероятность равна 2/4=0.5
Поделитесь своими знаниями, ответьте на вопрос:
Решите уравнение. найдите приближенное значение корней уравнения с точностью до десятых. в ответ запишите, чему равно расстояние между этими значениями на координатной прямой. 5 - y^2 = 3
у=(почти)+-1,4;
Расстояние = 1,4•2=2,8.