Дмитрий_Пергамент669
?>

Доказать , что (6^n + 20n +24) кратно 25.зарание .

Алгебра

Ответы

amxvel7596
Воспользуемся методом индукции:
1) При n=1: 6+20-1=25 - делится.
2) Пусть при n=k - делится.
3) Надо доказать, что при n=k+1 тоже делится. Подставляем вместо n k+1:

6^(k+1) + 20(k+1) -1 =
6*6^k + 20k + 20 - 1 = (вычетом и прибавим 6^k)
6*6^k + 20k + 20 - 1+ 6^k - 6^k = (сгруппируем слагаемые следующим образом) 
(6^k + 20k - 1) + ( 6*6^k + 20 - 6^k). 

(6^k + 20k - 1) - делится на 25 по второму пункту. Осталось доказать, что ( 6*6^k + 20 - 6^k) тоже делится на 25.

6*6^k + 20 - 6^k = 6^k * (6 - 1) + 20 = 5 * 6^k + 20 = 5 * (6^k+4). Т. к. (6^k+4) делится на 5 для любого натурального k, то утверждение доказано.
kitoova
Характеристика мечтателя "Белые ночи " .
Настенька - главная героиня произведения, она занимает основное место, благодаря ей развиваются все события.
Она милая, доброжелательная,скромная,спокойная, чувственная и ранимая девушка.В начале знакомства с Мечтателем она показала себя с лучшей стороны, но внешность обманчива, и Мечтатель увлекается ей, хотя девушка сразу сказала: "на дружбу я готова. . . а вот влюбится нельзя вас!".
Основные события происходят в конце повести, Настенька, обиженная на того человека, которого любит, делает необдуманный шаг, решаясь строить с Мечтателем планы на будущее, но все рухнуло, так же внезапно, как и начиналось. Мечтатель снова один, Настенька ушла, предав героя. Получив на утро письмо, молодой человек долго размышлял, но у него не было чувства грусти, а даже наоборот.
Девушка долго не замечала чувств героя, да и потом просто "воспользовалась" этим, но тот факт, что она искренне любила другого человека частично извиняет её. В своем последнем письме она просила не забывать о ней и любить её.
makscska22879
А)y`=dy/dx
(1+eˣ)ydy=eˣdx - уравнение с разделяющимися переменными
ydy=eˣdx/(1+eˣ)
∫ydy=∫eˣdx/(1+eˣ)
y²/2=ln|eˣ+1| + c - общее решение
Можно вместо с взять lnC  и заменить сумму логарифмов, логарифмом произведения. Так как eˣ>0, то eˣ+1>0, знак модуля можно опустить.
y²/2=lnС(eˣ+1)  - общее решение
при у=1 х=0
1/2=ln2C
2C=√e
C=(√e)/2

y²/2=ln((eˣ+1)· (√e)/2) - частное решение
можно умножить на 2
y²=2ln((eˣ+1)· (√e)/2) 
или
y²=ln((eˣ+1)²·e/4) - частное решение 

b) y`=dy/dx
tgxdy=y㏑ydx - уравнение с разделяющимися переменными
dy/ylny=dx/tgx;
∫dy/ylny=∫dx/tgx;
∫d(lny)/lny=∫d(sinx)/sinx;
ln|lny)=ln|sinx|+lnC;
ln|lny|=ln|Csinx| - общее решение дифференциального уравнения.
 
При y=e x=π/4
ln|lne|=ln|Csin(π/4)|
ln|1|=ln|C√2/2|  
1=C√2/2
C=√2
ln|lny|=ln|(√2)·sinx| - частное решение дифференциального уравнения.
 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Доказать , что (6^n + 20n +24) кратно 25.зарание .
Ваше имя (никнейм)*
Email*
Комментарий*