marinanx
?>

)укажите точку, которая не принадлежит графику -√х: k(16, 4), p(6, 25, -2, 5), c(0, 9), -0, 3), d (3, -√3)

Алгебра

Ответы

Орлова
ответ К (в координатах С опечатка? - если нет, то она тоже не принадлежит)
)укажите точку, которая не принадлежит графику -√х: k(16,4), p(6,25,-2,5), c(0,9), -0,3), d (3,-√3)
director3

ответ: Нет.

Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.

Пусть искомый многочлен f(x) существует.

Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3).

Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.

Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).

То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней

platonm777639

ответ: Нет.

Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.

Пусть искомый многочлен f(x) существует.

Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3).

Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.

Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).

То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

)укажите точку, которая не принадлежит графику -√х: k(16, 4), p(6, 25, -2, 5), c(0, 9), -0, 3), d (3, -√3)
Ваше имя (никнейм)*
Email*
Комментарий*