Решение системы уравнений х=2
у= -1
Объяснение:
Решить систему методом алгебраического сложения
3х+6у=0
2х-у-5=0
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно второе уравнение умножить на 6:
3х+6у=0
12х-6у=30
Складываем уравнения:
3х+12х+6у-6у=30
15х=30
х=30/15
х=2
Теперь значение х подставляем в любое из двух уравнений системы и вычисляем у:
3х+6у=0
6у= -3х
6у= -3*2
6у= -6
у= -1
Решение системы уравнений х=2
у= -1
в системе: первое уравнение 1/3x+0,2y(я просто 1/5 и получилось 0,2)=11, второе уравнение остается без изменений, то есть 3/5x-2y=8
Умножим первое уравнение на 10(чтобы избавиться от переменной y), получается
10/3x+2y=110
3/5x-2y=8
в результате сложения переменная "y" взаимно уничтожаться, и получается
10/3x+3/5x=118
Приводим к общему знаменателю 15, и получается
59/15x=118
x=118*15/59
x=30
Подставляем в любое из уравнений(я выбрала в первое), и получаем
10+1/5y=11
1/5y=11-10
1/5y=1
y=5
Проверка
1/3*30+1/5*5=11
10+1=11(верно)
ответ: x=30, y=5
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Слогарифмами 1) log9log3 27 2) 64^log4 7 3) 2cos (п/4-3х) = корень из 2 4) arctg (-1) +arcctg(-корень из 3/3) -arcctg0 5) 3^x+2 -3^x= 72 6) cos (arctg корень из 3+ arccos корень из 3/2