22 литра
Объяснение:
1. В первом бионе х литров молока.
2. Следовательно во втором бидоне 3х литров молока.
3. После того как из второго бидона перелили 6 литров молока в первый бидон, в нем осталось (3х - 6) литров.
4. Значит в первом бидоне стало (х + 6) литров молока.
5. Составим уравнение и узнаем сколько литров молока было в первом бидоне, если в итоге в нем оказалось на 1 литр молока больше.
(х + 6) - (3х - 6) = 1;
х + 6 - 3х + 6 = 1;
6 + 6 - 1 = 3х - х;
2х = 11;
х = 11 / 2;
х = 5,5 литров.
6. Узнаем сколько молока было во втором бидоне.
5,5 * 3 = 16,5 литров
7. Узнаем сколько литров молока в двух бидонах.
5,5 + 16,5 = 22 литра.
ответ: В двух бидонах 22 литра молока.
Объяснение:
а) 0,584∨7/12; 0,584=584/1000=73/125
НОК (125; 12)=1500; 876/1500>875/1500 (т.к. числители: 876>875 при равных знаменателях: 1500=1500) ⇒ 0,584>7/12
б) -7/15∨-0,(46); -0,(46)=-46/99
НОК (15; 99)=495; -231/495<-230/495 (т.к. числители: -231<-230 при равных знаменателях: 495=495) ⇒ -7/15<-0,(46)
в) 0,(67)∨0,676; 0,67=67/99; 0,676=676/1000=169/250
НОК (99; 250)=24750; 16750/24750>16731/24750 (т.к. числители: 16750>16731 при равных знаменателях: 24750=24750) ⇒ 0,(67)>0,676
г) -0,384∨-0,(38); -384/1000=-48/125; -0,(38)=-38/99
НОК (125; 99)=12375; -4752/12375<-4750/12375 (т.к. числители: -4752<-4750 при равных знаменателях: 12375=12375) ⇒ -0,384<-0,(38)
д) 0,(619)∨13/21; 0,619=619/999
НОК (999; 21)=6993; 4333/6993>4329/6993 (т.к. числители: 4333>4329 при равных знаменателях: 6993=6993) ⇒ 0,(619)>13/21
е) -0,1(67)∨-1/6; -0,1(67)=-(167-1)/990=-166/990=-83/495
НОК (990; 6)=990; -166/990<-165/990 (т.к. числители: -166<-165 при равных знаменателях: 990=990) ⇒ -0,1(67)<-1/6
Поделитесь своими знаниями, ответьте на вопрос:
Верно ли тождество? (2а+√b)² = 4a²+2a√b+b
(2а+√b)²=4а²+4а√b+b