a) x∈ (-∞;3)
b) x∈ (-∞;0] ∪ [4;+∞)
c) x∈ (-∞;0)∪(0;2/3)
d) x∈ [-1/2;1) ∪ (1;+∞)
Объяснение:
a) f(x)=√(-x+3);
-x+3≥0; -x≥-3; x≤3.
ОО: x∈(-∞;3).
b) f(x)=√(0,5x²-2x); 0,5x²-2x≥0; x(0,5x-2)≥0;
x≥0;
0,5x-2≥0; x≥2/0,5; x≥4; x∈[4;+∞);
x≤0;
0,5x-2≤0; x≤2/0,5; x≤4; x∈(-∞;0];
OO: x∈(-∞;0] ∪ [4;+∞);
c) f(x)=ln(2/x-3);
2/x-3>0; 2/x>3; x<2/3; x∈(-∞;2/3);
x≠0; x∈(-∞;0)∪(0;+∞)
OO: x∈(-∞;0)∪(0;+∞) ∩ (-∞;2/3) ⇒ x∈(-∞;0)∪(0;2/3)
d) f(x)=√(3/(x-1)+2);
3/(x-1)+2≥0; 3+2(x-1)≥0; x≥-1/2; x∈[-1/2;+∞)
x-1≠0; x≠1; x∈(-∞;1)∪(1;+∞)
OO: x∈[-1/2;+∞) ∩ (-∞;1)∪(1;+∞) ⇒ x∈[-1/2;1)∪(1;+∞)
Поделитесь своими знаниями, ответьте на вопрос:
Решите систему. но не методом подбора. я и так знаю, что ответы 1, -1, 2
Обозначим:
Тогда
Получаем систему уравнений:
По теореме Виета для кубического уравнения x³+q₁x²+q₂x+q₃=0 коэффициенты равны
q₁=-(x+y+z) ,
q₂=xy+yz+xz
q₃=-xyz
Значит, решения последней системы будут решениями кубического уравнения u³-2u²-u+2=0 .
(u³-u)+(-2u²+2)=0
u(u²-1)-2(u²-1)=0
(u²-1)(u-2)=0
(u-1)(u+1)(u-2)=0
u-1=0 ⇒ u=1
u+1=0 ⇒ u=-1
u-2=0 ⇒ u=2
Значит, будем иметь 6 решений сиcтемы:
(1,-1,2) , (1,2,-1) , (-1,1,2) , (-1,2,1) , (2,1,-1) , (2,-1,1) .