1) Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого выражения на второе плюс квадрат второго выражения. (a+b)2 = a2+2ab+b2 a) (x + 2y)2 = x2 + 2 ·x·2y + (2y)2 = x2 + 4xy + 4y2б) (2k + 3n)2 = (2k)2 + 2·2k·3n + (3n)2 = 4k2 + 12kn + 9n22) Квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение первого выражения на второе плюс квадрат второго выражения. (a-b)2 = a2-2ab+b2 а) (2a – c)2 = (2a)2-2·2a·c + c2 = 4a2 – 4ac + c2б) (3a – 5b)2 = (3a)2-2·3a·5b + (5b)2 = 9a2 – 30ab + 25b23) Разность квадратов двух выражений равна произведению разности самих выражений на их сумму. a2–b2 = (a–b)(a+b)a) 9x2 – 16y2 = (3x)2 – (4y)2 = (3x – 4y)(3x + 4y)б) (6k – 5n)( 6k + 5n) = (6k)2 – (5n)2 = 36k2 – 25n24) Куб суммы двух выражений равен кубу первого выражения плюс утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения. (a+b)3 = a3+3a2b+3ab2+b3a) (m + 2n)3 = m3 + 3·m2·2n + 3·m·(2n)2 + (2n)3 = m3 + 6m2n + 12mn2 + 8n3б) (3x + 2y)3 = (3x)3 + 3·(3x)2·2y + 3·3x·(2y)2 + (2y)3 = 27x3 + 54x2y + 36xy2 + 8y35) Куб разности двух выражений равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.(a-b)3 = a3-3a2b+3ab2-b3а) (2x – y)3 = (2x)3-3·(2x)2·y + 3·2x·y2 – y3 = 8x3 – 12x2y + 6xy2 – y3б) (x – 3n)3 = x3-3·x2·3n + 3·x·(3n)2 – (3n)3 = x3 – 9x2n + 27xn2 – 27n36) Сумма кубов двух выражений равна произведению суммы самих выражений на неполный квадрат их разности.a3+b3 = (a+b)(a2–ab+b2)a) 125 + 8x3 = 53 + (2x)3 = (5 + 2x)(52 — 5·2x + (2x)2) = (5 + 2x)(25 – 10x + 4x2)б) (1 + 3m)(1 – 3m + 9m2) = 13 + (3m)3 = 1 + 27m37) Разность кубов двух выражений равна произведению разности самих выражений на неполный квадрат их суммы. a3-b3 = (a-b)(a2+ab+b2)а) 64с3 – 8 = (4с)3 – 23 = (4с – 2)((4с)2 + 4с·2 + 22) = (4с – 2)(16с2 + 8с + 4)б) (3a – 5b)(9a2 + 15ab + 25b2) = (3a)3 – (5b)3 = 27a3 – 12
Екатерина_Кирушев
01.11.2020
Задача 1) Пусть х (км/ч) - скорость первого автомобилиста, тогда второй автомобилист ехал первую половину пути (х-12) км/ч.S (км) - весь путь. Время, затраченное первым автомобилистом на весь путь:S/х (ч). Время, затраченное вторым автомобилистом на первую половину пути:S/ (х-12) (ч), а время, затраченное вторым автомобилистом на вторую половину пути: S/70 (ч). Составим уравнение.S/х= 0,5S/ х-12 + 0,5S/70S*70(х-12)=0,5S*70+0,5S *х(х-12)S*(70х-840) = S*35х +S*0,5*(х^2-12х)Разделим всё на S70х-840=35х+0,5х^2-6х70х-35х+6х-0,5х^2-840=0Решаем квадратное уравнение-0,5х^2+41х-840=0х1,2=(-41 +- (корень квадратный из:41^2 - 4 *(-0,5)*(-840)) / 2*(-0,5)х1,2=(-41+- (корень квадратный из: 1681-1680)) / (-1)х1,2=(-41 +-1) / (-1)х1= (-41+1)/ (-1)=-40: (-1)=40х2= (-41-1)/ (-1) = -42: (-1) =42 Скорость 40 км/ч не подходит, т.к. по условию задачи скорость первого автомобилиста больше 41 км/ч, следовательно скорость первого автомобилиста: 42 км/ч ответ: скорость первого автомобилиста 42 км/ч Задача 2) Пусть х км в час скорость лодки в неподвижной воде. (х+3) км в час скорость лодки по течению, (х-3) км в час скорость лодки против течения Плот км со скоростью реки, т.е 3 км в час 51:3= 17 часов плыл плот, Лодка отправилась на час позже, т.е плыла 17-1=16 часов За это время лодка проплыла путь в 140 км по течению и 140 км против течения Составим уравнение: 140/(х+3) + 140/ (х-3)= 16 Приведем дроби к общему знаменателю 140( х-3+х+3)/(х²-9) = 16, раздели обе части уравнения на 4 и умножим на (х²-9)≠0 получим: 35·2х=4(х²-9). 4х²-70х-36=0. 2х²-35х-18=0 D=35²+8·18=1225+144=1369=37² x=(35-37)/4 <0 не удовлетворяет условию задачи или х=(35+37)/4=18 ответ 18 км в час скорость лодки в неподвижной воде
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Решить уравнение, , cos в квадрате x - 5 sin x cos x + 4 sin в квадрате x = 0