goldenshtein33333
?>

Преобразуйте выражение 5sinx+12cosx к виду csin x+t

Алгебра

Ответы

Smirnovav1982422
5sinx + 12cosx 
r = √(a^2 + b^2) = √(5^2 + 12^2) = 13
cost = 5/13
sint = 12/13
t= arcsin 12/13

5/13*sinx + 12/13*cosx = 13*(5/13sinx + 12/13cosx) =
= 13 sin (x + arcsin 12/13)
Вершинина1161
Y=-x²-6x-7     y=x+3
-x²-6x-7=x+3
x²+7x+10=0    D=9
x₁=-5     x₂=-2
S=₋₂∫⁻⁵(-x²-6x-7-x-3)dx=₋₂∫⁻⁵(-x²-7x-10)dx==(-x³/3-3,5x²-10x) ₋₂|⁻⁵=                              =(-(-5)³/3-3,5*(-5)²-10*(-5)-(-(-2)³/3-3,5*(-2)²-10*(-2)))=
=(125/3-87,5+50-(8/3-14+20))=(125/3-37,5-8/3-6)=(43,5-117/3)=(117/3-87/2)=              =(117*2-87*3)/6=(234-261)/6=(-27/6)=-9/2=|-4,5|=4,5.
ответ: S=4,5 кв. ед.

y=-x²-6x-11    y=-x+3
-x²+6x-11=-x+3
x²-7x+14=0   D=-7 ⇒ уравнение не имеет действительных корней  ⇒
графики y=-x²-6x-11 и y=-x+3 не пересекаются.
ann328389

y=Π/3-x

sin x+cos(Π/3-x)=1

sin x+cos Π/3*cos x+sin Π/3*sin x=1

sin x*(1+√3/2)+cos x*1/2=1

Переходим к половинным аргументам и умножаем все на 2.

2sin(x/2)*cos(x/2)*(2+√3) + cos^2(x/2) - sin^2(x/2) = 2cos^2(x/2)+2sin^2(x/2)

Переносимости все в одну сторону

3sin^2(x/2) - (4+2√3)*sin(x/2)*cos(x/2) + cos^2(x/2) = 0

Делим все на cos^2(x/2)

3tg^2(x/2)-(4+2√3)*tg(x/2)+1=0

Замена t=tg(x/2)

3t^2-(4+2√3)*t+1=0

Получили обычное квадратное уравнение

D/4=(2+√3)^2-3*1=4+4√3+3-3= 4+4√3

t1=tg(x/2)=[2+√3-√(4+4√3)]/3

t2=tg(x/2)=[2+√3+√(4+4√3)]/3

Соответственно

x1=2*arctg(t1)+Π*n; y1=Π/3-x1

x2=2*arctg(t2)+Π*n; y2=Π/3-x2

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Преобразуйте выражение 5sinx+12cosx к виду csin x+t
Ваше имя (никнейм)*
Email*
Комментарий*