Рассуждаем следующим образом. Чтобы А³ была нулевой матрицей, но чтобы при этом матрица А² не была нулевой, нужно чтобы в матрице А² все элементы кроме одного были равны нулю. Тогда в матрице А должны быть все элементы кроме двух равны нулю. Таким условиям отвечает, матрица, в которой, например два элемента находящихся на линии, параллельной главной диагонали, равны 1, а все остальные элементы матрицы равны нулю: Или: Тогда при возведении первой матрицы в квадрат получим матрицу: А при возведении второй матрицы в квадрат получим: А возведя в третью степень обе матрицы, получим нулевые матрицы. ответ: или
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Раскрыть скобки: а) (2х+4)^2 б) (х^2-2y^2)^2 ^ это в степени
а)=4х^2+16х+16
б)=х^4-4х^2у^2+4у^4