Решение 1)найти стационарные точки f(x)=x^4-200x^2+56 f`(x) = 4x³ - 400x 4x³ - 400x = 0 4x*(x² - 100) = 0 4x = 0, x₁ = 0 x² - 100 = 0 x² = 100 x₂ = - 10 x₃ = 10 ответ: x₁ = 0 ; x₂ = - 10 ; x₃ = 10 - стационарные точки 2) определить интервалы возрастания функций f(x)=x^3-x^2-x^5+23 1. Находим интервалы возрастания и убывания. Первая производная. f'(x) = -5x⁴ + 3x² - 2x или f'(x) = x * (-5x³ + 3x - 2) Находим нули функции. Для этого приравниваем производную к нулю x * (-5x³ + 3x - 2) = 0 Откуда: x₁ = - 1 x₂ = 0 (-1; 0) f'(x) > 0 функция возрастает 3) определить интервалы убывания функций f(x)=x^3-7,5x^2+1 1. Находим интервалы возрастания и убывания. Первая производная. f'(x) = 3x² - 15x или f'(x) = x*(3x - 15) Находим нули функции. Для этого приравниваем производную к нулю x*(3x - 15) = 0 Откуда: x₁ = 0 x₂ = 5 (0; 5) f'(x) < 0 функция убывает 4) вычислить значение функции в точке максимума f(x)=x^3-3^2-9x+1 Решение. Находим первую производную функции: y' = 3x² - 9 Приравниваем ее к нулю: 3x² - 9 = 0 x² = 3 x₁ = - √3 x₂ = √3 Вычисляем значения функции f(- √3) = - 8 + 6√3 точка максимума f(√3) = - 6√3 - 8 fmax = - 8 + 6√3 ответ: fmax = - 8 + 6√3
ksen1280
12.03.2023
8)21*(47-13)=21*34=7*3*2*17 делители: 2,3,7,17 34*(13+12) =34*25=2*17*5*5 делители: 2,5,17 9) 8,7*(5,2+7,8) -13*1,7=8,7*13-13*1,7=13*(8,7-1,7)=13*7=91 4)0,25 x 4 x 6-1/3 x 9 x 10=1*6+3*10=6+30=36 1) a)1/6 x 1,79 - 0,35 x 1/6=1/6(1,79-0,35)=1/6*1,44=0,24 б)1,75 x 17 + 1,75 x 3=1,75(17+3)= 1,75*20=35 5) а) да б) да в) нет 6) 24 x (1/3-1/12)-35 x (1/7-1/5)= 24*1/3 -24*1/12 -35*1/7 +35*1/5 =8-2-5+7=8
2) 8,37+5,4+2,63+6,6=(8,37+2,63)+(5,4+6,6)=11+10=21 Переместительное и сочетательное 3) от -210 до 212 Сложим числа -210+210=0, -209+209=0 и т.д. Сумма всех чисел сводится к сумме чисел 211+212=423 Переместительное и сочетательное свойства 7) 0,2 x 5-1/7 x (-10) x 14=1-1/7*14*(-10=)1-2*10=1-20=-19