ИвановнаВладимир1832
?>

На отрезке ab выбрана точка c так, что ac=68 и bc=17 . построена окружность с центром a , проходящая через c . найдите длину отрезка касательной, проведённой из точки b к этой окружности. решите .

Алгебра

Ответы

Абубакр_Будаш

ВМ=51

Объяснение:

Дано: АВ - отрезок; С∈АВ; АС=68; СВ=17; А - центр окружности с радиусом АС; ВМ - касательная к окружности.

Найти: ВМ.

Проведем отрезок АМ. АМ - радиус окружности, проведенный в точку касания прямой ВМ и окружности. Значит АМ⊥ВМ, и ΔАМВ прямоугольный.

АМ=АС=r=68.

АВ=АС+СВ=68+17=85.

По теореме Пифагора найдем катет ВМ.

BM=\sqrt{AB^2-AM^2}=\sqrt{85^2-68^2}=\sqrt{(85-68)(85+68)}=\sqrt{17*153}=\sqrt{17*17*9}=\sqrt{17*17}*\sqrt{9}=17*3=51

ответ: ВМ=51.


На отрезке ab выбрана точка c так, что ac=68 и bc=17 . построена окружность с центром a , прохо
Fomin Korablev1781
a-x^2 \geq |sinx|

График  y=|sinx|  расположен выше оси ОХ.
Точки пересечения с осью ОХ:  x=\pi n\; ,\; n\in Z .
Графики функций  y=a-x^2 - это параболы , ветви
которых направлены вниз, а вершины в точках (0, а).
При х=0  sin0=0 и точка (0,0) является точкой пересечения 
графика у=|sinx| и оси ОУ, на которой находятся вершины парабол.
При а=0 графики y=|sinx| и y=x² имеют одну точку пересе-
чения - (0,0), при а<0  точек пересе-
чения вообще нет. А при а>0 будет всегда 2 точки пересе-
чения этих графиков и соответственно, будет выполняться
заданное неравенство.
То есть одна точка пересечения при а=0.
ответ:  а=0.
При каком значении параметра а неравенство а-x^2больше или равно|sinx| имеет единственное решение? н
anastasiavilina
1уравнение:

3x^ + 2x - 5 = 0

Найдем дискриминант квадратного уравнения:

D = b^ - 4ac = 22 - 4·3·(-5) = 4 + 60 = 64

Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:

x1 = -2 - √64 2·3 = (-2 - 8)÷6 =-10/6 = -5/3 ≈ -1.6666666666666667
x2 = -2 + √64 2·3 = (-2 + 8)÷6 =6/6 = 1

2уравнение:

5x^+3x−2=0
Коэффициенты уравнения:
a=5, b=3, c=−2
Вычислим дискриминант:
D=b2−4ac=32−4·5·(−2)=9+40=49
(D>0), следовательно это квадратное уравнение имеет 2 различных вещественных корня:
Вычислим корни:
x(1,2)=−b±√D÷2a
x1=−b+√D÷2a=−3+7÷2·5=4/10=0,4
x2=−b−√D÷2a=−3−7÷2·5=−10/10=−1
5x2+3x−2=(x−0,4)(x+1)=0
ответ: x1=0,4;x2=−1

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

На отрезке ab выбрана точка c так, что ac=68 и bc=17 . построена окружность с центром a , проходящая через c . найдите длину отрезка касательной, проведённой из точки b к этой окружности. решите .
Ваше имя (никнейм)*
Email*
Комментарий*