balabinatanya7174
?>

Разложите на множители #986 3 а) 0, 027 x +1=? 6 3 б) y - 0, 001x=? 3 3 в) d + 0, 008c=? 3 г) 125- 0, 064p= ? , нужно

Алгебра

Ответы

Tatyana Anton1475
А) 0,027x3 + 1 = (0,3x + 1)(0,09x2 - 0,3x + 1);
б) у6 - 0,001x3 = (y2 - 0,1x)(y4 + 0,1xy2 + 0,01x2);
в) d3 + 0,008с3 = (d + 0,2c)(d2 - 0,2cd + 0,04c);
г) 125 - 0,064р3 = (5 - 0,4p)(25 + 2p + 0,16p2).
ella440
x\cdot y'=x \cdot e^\big{ \frac{y}{x} }+y
Убедимся, что данное дифференциальное уравнение является однородным. 

То есть, воспользуемся условием однородности
\lambda x\cdot y'=\lambda x \cdot e^\big{ \frac{\lambda y}{\lambda x} }+\lambda y\\ \\ \lambda x\cdot y'=\lambda(x \cdot e^\big{ \frac{\lambda y}{\lambda x} }+y)\\ \\ x\cdot y'=x \cdot e^\big{ \frac{y}{x} }+y
Итак, данное дифференциальное уравнение является однородным.

Однородное дифференциальное уравнение сводится к уравнению с разделяющимися переменными относительно новой неизвестной функции u=u(x) с замены:
  y=ux, тогда y'=u'x+u
x\cdot (u'x+u)=x\cdot e^\big{ \frac{ux}{x} }+ux\\ \\ x\cdot (u'x+u)=x(e^u+u)\\ \\ u'x+u=e^u+u

u'x=e^u
По определению дифференциала, получаем
\dfrac{du}{dx} \cdot x=e^u - уравнение с разделяющимися переменными.
Разделим переменные.
\dfrac{du}{e^u} = \dfrac{dx}{x} - уравнение с разделёнными переменными.

Проинтегрируем обе части уравнения
\displaystyle \int\limits { \frac{du}{e^u} } \,=\int\limits { \frac{dx}{x} } \\ \\ \int\limits {e^{-u}} \, du=\int\limits { \frac{1}{x} } \, dx
-e^{-u}=\ln |x|+C - общий интеграл новой функции.

Таким образом, определив функцию u из решения уравнения с разделяющимися переменными, чтобы записать решение исходного однородного уравнения, остаётся выполнить обратную замену: u= \dfrac{y}{x}

То есть, 

-e^\big{-\frac{y}{x} }=\ln |x|+C - общий интеграл исходного уравнения.
Остаётся определить значение произвольной постоянной C. Подставим в общий интеграл начальное условие:
-e^\big{-\frac{0}{1} }=\ln |1|+C\\ C=-1

-e^\big{-\frac{y}{x} }=\ln |x|-1 - частный интеграл, также является решением данного дифференциального уравнения.

ответ: -e^\big{-\frac{y}{x} }=\ln |x|-1
SAMSCHOOL96
Применим метод Лагранжа. Т.е. найдем общее решение соответствующего однородного уравнения

                                            xy'-3y=0                 (*)

Уравнение (*) является дифференциальным уравнением с разделяющими переменными.

            \dfrac{dy}{y} =3 \dfrac{dx}{x} ;~~~~~~~~\displaystyle~~~~~~\int \dfrac{dy}{y} =3 \int\dfrac{dx}{x} ;~~~~~~~\Rightarrow~~~~~~ y=Cx^3

Примем константу за функцию, т.е. y=C(x)\cdot x^3. Тогда, дифференцируя по правилу произведения.
         y'=C'(x)\cdot x^3+3x^2C(x)

Подставим теперь все это в исходное уравнение

                     x\cdot(C'(x)\cdot x^3+3x^2C(x))-3C(x)\cdot x^3=x^4e^x\\ \\ x^4C'(x)+3x^3C(x)-3x^3C(x)=x^4e^x\\ \\ ~~~~~~~C'(x)=e^x;~~~~~\Rightarrow~~~~ ~~ C(x)=e^x+C

Получаем общее решение данного ДУ :  \boxed{y=(e^x+C)x^3}

                    e=(e^0+C)\cdot0^3;~~~~~~~\Rightarrow~~~~~~~ e\ne0

В поиске частного решения произошла ошибка в условии. Если нет никакой ошибки, что ж уж поделать!

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Разложите на множители #986 3 а) 0, 027 x +1=? 6 3 б) y - 0, 001x=? 3 3 в) d + 0, 008c=? 3 г) 125- 0, 064p= ? , нужно
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

alenkadon6
Низамов
Нана_Елена
ВайсманКреденс357
Shirochkingames
Olenkalebedeva4477
enot1975
Vasilevna_Mikhail19
Fedorova_79166180822
Банова_Елена431
Александр Сергей
Преоброзить в многочлен(7х+а)²
Mikhail1369
taanaami75
oleonov
Konstantinovna1936
Розв'яжи ривняння : ❤​