Первый путём разложения на множители):
х²-3х+2=0
х²-х-2х+2=0
х(х-1)-2(х-1)=0
(х-1)×(х-2)=0
х-1=0
х-2=0
х=1
х=2
х(под х пишем 1)=1
х(под х пишем 2)=2
Второй метод выделения полного квадрата):
х²-3х+2=0
х²-3х=-2
x^{2} - 3x + ( \frac{3}{2})^{2} = - 2 + ( \frac{3}{2})^{2}x
2
−3x+(
2
3
)
2
=−2+(
2
3
)
2
(x - \frac{3}{2})^{2} = \frac{1}{4}(x−
2
3
)
2
=
4
1
х=1
х=2
х(под х пишем 1)=1
х(под х пишем 2)=2
Третий по формуле для корней квадратного уравнения):
х²-3х+2=0
x = \frac{ - ( - 3) + - \sqrt{( - 3) ^{2} } - 4 \times 1 \times 2 }{2 \times 1}x=
2×1
−(−3)+−
(−3)
2
−4×1×2
x = \frac{3 + - \sqrt{9 - 8} }{2}x=
2
3+−
9−8
x = \frac{3 + - \sqrt{1} }{2}x=
2
3+−
1
x = \frac{3 + - 1}{2}x=
2
3+−1
x = \frac{3 + 1 }{2}x=
2
3+1
x = \frac{3 - 1}{2}x=
2
3−1
Где «+-» это означает «±»
х=2
х=1
х(под х пишем 1)=1
х(под х пишем 2)=2
1) а1=-2 , d=3 , an=118-?
an=a1+(n-1)d
118= -2+(n-1)3
118= -2+3n-3
118 +5=3n
3n=123
n=41
a41=a1+40d= -2 + 120= 118 - является 41 членом арифметической прогрессии.
2) а39=83 ,d= -2 ,a1-?
a39=a1+ 38d
a1= a39 - 38d
a1= 83 - 38•(-2)=83 + 76=159
ответ: а1 = 159
3) а21= - 156, а34= -260, а1-? d-?
a21=a1 +20d --- a1=a21- 20d
a34=a1 +33d --- a1=a34- 33d
a1=a1
a21 -20d=a34 -33d
-20d+33d=a34-a21
13d= -260+156
13d=-104
d=-8
a1=a21-20d= -156-20•(-8)=-156+160= 4
ИЛИ:
а34=а1 + 33d
a34=a21+13d
a34-a21=13d
-260+156=13d
-104=13d
d=-8
a1=a34-33d=-260-33•(-8)=-260+264=4
Поделитесь своими знаниями, ответьте на вопрос:
Розкладіть на множник 1в³-8с³=? 2).4а²+20ав+25в²=? 3).0, 125х³-8=?
2) 4a²+20ab+25b²=(2a+5b)².
3) 0,125x³-8=(0,5x-2)(0,25x²+x+4).