stperelyot7833
?>

1) найдите сумму двадцати первых членов арифметической прогрессии: -21; -18; -15; 2) найдите сумму сорока первых членов последовательности (bn) (b-нной), заданной формулой bn = 4n-2. 3) является ли число 30, 4 членом арифметической прогрессии (an), в которой a1=11, 6 и a15=17, 2. 4) найдите сумму всех натуральных чисел, кратных 7 и не превосходящих 150.

Алгебра

Ответы

lider123
1) d=3
S20=-42+3*19/2 * 20=150

2) тк bn=4n-2 --->>> n1=4-2=2 , d=4
S40=4+4*39/2 * 40= 3200

3)а15=а1+d(n-1)
17,2=11,6+14d
14d=5,6
d=0,4

30,4=11,6+0,4(n-1)
0,4n=19,2
n=48
Сделаем вывод, что число 30,4 является членом n48 в данной прогрессии

4) a1=7, an=147, d=7
an=a1+d(n-1)
147=7+7(n-1)
Отсюда n=21
S21=7+147/2 * 21=1617

ответ : 1)150; 2)3200; 3)да, n=48; 4)1617
reznikvi
X^4 - 3x^2 - 11x - 21 = 0
Добавим и вычтем 3x^3 и 9x^2
x^4 - 3x^3 + 3x^3 - 9x^2 + 9x^2 - 3x^2 - 11x - 21 = 0
Объединяем в группы и приводим подобные
(x^4 - 3x^3) + (3x^3 - 9x^2) + 6x^2 - 11x - 21 = 0
Добавим и вычтем 18x
(x^4 - 3x^3) + (3x^3 - 9x^2) + (6x^2 - 18x) + 18x - 11x - 21 = 0
Опять приводим подобные
(x^4 - 3x^3) + (3x^3 - 9x^2) + (6x^2 - 18x) + (7x - 21) = 0
Выносим (x - 3)
(x - 3)(x^3 + 3x^2 + 6x + 7) = 0
x1 = 3
Решаем кубическое уравнение подбором
f(x) = x^3 + 3x^2 + 6x + 7 = 0
Ясно, что при любом x >= 0 левая часть > 0, поэтому все корни < 0
f(-1) = -1 + 3 - 6 + 7 = 3 > 0
f(-2) = -8 + 12 - 12 + 7 = -1 < 0
-2 < x2 < -1
f(-3) = -27 + 27 - 18 + 7 = -11 < 0
Ясно, что дальше результат будет еще меньше, других корней нет.
Единственный корень x2 - иррациональный. Его можно уточнить
f(-1,8) = (-1,8)^3 + 3(-1,8)^2 - 6*1,8 + 7 = 0,088 > 0
f(-1,9) = (-1,9)^3 + 3(-1,9)^2 - 6*1,9 + 7 = -0,429 < 0
f(-1,81) = (-1,81)^3 + 3(-1,81)^2 - 6*1,81 + 7 = 0,03856 > 0
f(-1,82) = (-1,82)^3 + 3(-1,82)^2 - 6*1,82 + 7 = -0.01137 < 0
f(-1,817) = (-1,817)^3 + 3(-1,817)^2 - 6*1,817 + 7 = 0,00366
f(-1,818) = (-1,818)^3 + 3(-1,818)^2 - 6*1,818 + 7 = -0,00134
f(-1,8177) = (-1,8177)^3 + 3(-1,8177)^2 - 6*1,8177 + 7 = 0,0001586
Трех нулей после запятой вполне достаточно.
ответ: x1 = 3, x2 ~ -1,877
shuramuji

3,84

Объяснение:

Проводя различные измерения, решая уравнения графическим выполняя арифметические вычисления, часто получают приближенные значения, а не точные. Например, при вычислении корня числа может получиться бесконечная непериодическая дробь (т. е. иррациональное число). Кроме того, существуют бесконечные периодические дроби, использовать которые в вычислениях также неудобно.

Поэтому числа, являющиеся бесконечными десятичными дробями или конечными, но имеющими множество знаков после запятой, принято округлять.

Когда округление выполняется в большую сторону, то говорят о приближении по избытку. Когда округление выполняется в меньшую сторону, то говорят о приближении по недостатку.

Полученное при округлении число называют приближенным по недостатку или избытку с определенной точностью. Рассмотрим несколько примеров приближения.

Число π является бесконечной дробью 3,1415926535... Обычно его округляют с точностью до 0,01. Это значит, что после запятой оставляют только два знака. При приближении по избытку получится 3,15. При приближении по недостатку получится 3,14.

Для числа π обычно используют приближение по недостатку, так как согласно правилу округления положительные числа округляются в большую сторону, если первая отбрасываемая цифра 5 или больше пяти. Так как у числа π третья цифра после запятой — это 1, то округление выполняется в меньшую сторону, то есть для расчетов выполняется приближение по недостатку.

Однако, несмотря на правила округления, имеют право быть приближения как по недостатку, так и по избытку.

Если выполнять приближение числа π с точностью до 0,0001, то по избытку получим π ≈ 3,1416, а по недостатку π ≈ 3,1415.

Рассмотрим иррациональное число √2, которое равно 1,414213... . Вычислим его приближение по недостатку и по избытку с точностью до 0,001. Поскольку приближение выполняется до тысячных долей, то у числа надо оставить три знака после запятой. При приближении по недостатку просто отбрасываются все цифры после третьей после запятой. При приближении по избытку цифры после третьей после запятой отбрасываются, а третья цифра увеличивается на 1. Таким образом, приближение по недостатку будет √2 ≈ 1,414, а по избытку √2 ≈ 1,415.

Но примеры, рассмотренные выше, это положительные числа. А так ли обстоит дело при приближении отрицательных чисел. Если взять число –√2 = –1,414213..., то его приближением по избытку до тысячных долей будет –1,414, так как это число больше, чем –√2. А вот приближением по недостатку будет –1,415, так как это число меньше, чем –√2.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

1) найдите сумму двадцати первых членов арифметической прогрессии: -21; -18; -15; 2) найдите сумму сорока первых членов последовательности (bn) (b-нной), заданной формулой bn = 4n-2. 3) является ли число 30, 4 членом арифметической прогрессии (an), в которой a1=11, 6 и a15=17, 2. 4) найдите сумму всех натуральных чисел, кратных 7 и не превосходящих 150.
Ваше имя (никнейм)*
Email*
Комментарий*