Еще одна популярная задача теории вероятностей (наравне с задачей о подбрасывании монет) - задача о подбрасывании игральных костей.
Обычно задача звучит так: бросается одна или несколько игральных костей (обычно 2, реже 3). Необходимо найти вероятность того, что число очков равно 4, или сумма очков равна 10, или произведение числа очков делится на 2, или числа очков отличаются на 3 и так далее.
Основной метод решения подобных задач - использование формулы классической вероятности, который мы и разберем на примерах ниже.
Ознакомившись с методами решения, вы сможете скачать супер-полезный Excel-файл для расчета вероятности при бросании 2 игральных костей (с таблицами и примерами).
Объяснение:
если не по теме то не баньте
Пусть (x₀;y₀) - точка касания. Так как точка (x₀;y₀) находится на параболе y=x², то точка имеет координаты (x₀;x²₀)
0 < x₀< 6
Уравнение касательной к кривой y=f(x) в точке (x₀;y₀) имеет вид:
y- f(x₀)=f`(x₀)(x-x₀)
f`(x)=2x
f`(x₀)=2x₀
y -x²₀ =2x₀(x-x₀)
y=2x₀x - x²₀ - уравнение касательной
Касательная пересекает ось Ох в точке A(x₀/2)
2x₀x - x²₀=0
x₀(2x - x₀)=0
х=x₀/2
Касательная пересекает прямую х=3 в точке B(3; 6x₀ - x²₀)
y=2x₀ 3 - x²₀
y = 6x₀ - x²₀
Пусть С(3;0)
BC=6x₀ - x²₀
AC=3-(x₀/2)
S_(Δ)=(1/2)AC*BC=(1/2)(3-(x₀/2))·(6x₀ - x²₀) - исследуем функцию на экстремум на [0;3]
Обозначим x₀=t
S(t)=(1/2)(3-(t/2))·(6t - t²)
S(t)=(1/4)(6-t)·(6t - t²)
S(t)=(1/4)*F(t)
F(t)=t(6-t)^2
S(t) принимает наибольшее значения в тех же точках, в каких и F(t)
Исследуем на [0;3]
F`(t)=t`·(6-t)²+t·((6-t)²)`=(6-t)²+t·2(6-t)·(6-t)`=(6-t)(6-t-2t)=(6-t)(6-3t)
F`(t)=0
6-t=0 ⇒ t=6 не принадлежит [0;3] или 6-3t=0 ⇒ t=2 принадлежит [0;3]
t=2 - точка максимума, производная меняет знак с + на -
О т в е т. S(2)=(1/4)(6-2)·(6·2 - 2²) ; S(2)=8 - наибольшее значение
Поделитесь своими знаниями, ответьте на вопрос:
Решить! 50 ! найдите наименьшее значение выражения х2-8х+25
f(4)=4^2-8*4+25=16-32+25=9
f(x)=x^2-8x+25 парабола , ветви вверх
найдем производную и приравняем ее к нулю
2x-8=0
x=4
f(4)=4^2-8*4+25=16-32+25=9
наименьшее значение выражения Х^2-8Х+25 равно 9