* * * * * * * * * * * * * * * * * * * * * * * * * * *
ответ: а) F(x) = x³/3 -9 ; б) F(x) = sin(x)+(32-√3)/2 .
Найти первообразную функции y=f(x), график которой проходит через данную точку
а) y=x² ; D(3;0)
б) y=2cos²x/2-1 ; M(π/3; 16)
Объяснение:
а) F(x) = ∫ydx = ∫ x²dx = x³/3+ C
т.к. точка D(3;0) ∈ гр. F(x) , то 0 = 3³/3+ C ⇒ C = - 9 , значит F(x) = x³/3 -9 .
б) F(x) = ∫ydx =∫( 2cos²(x/2) - 1 )dx = ∫cos(x)dx = sin(x)+C
т.к. точка M(π/3; 16) ∈ гр. F(x) , то 16 = sin(π/3)+ C ⇒C =16-√3 /2=(32-√3)/2 значит F(x) = sin(x)+(32-√3)/2 .
* * *cos²α =(1+cos2α) / 2 * * *
! 2cos²(x/2) - 1=cos²(x/2) - ( 1-cos²(x/2) ) =cos²(x/2)-sin²(x/2) =cos2*x/2 =cosx
* * * * * * * * * * * * * * * * * * * * * * * * * * *
ответ: а) F(x) = x³/3 -9 ; б) F(x) = sin(x)+(32-√3)/2 .
Найти первообразную функции y=f(x), график которой проходит через данную точку
а) y=x² ; D(3;0)
б) y=2cos²x/2-1 ; M(π/3; 16)
Объяснение:
а) F(x) = ∫ydx = ∫ x²dx = x³/3+ C
т.к. точка D(3;0) ∈ гр. F(x) , то 0 = 3³/3+ C ⇒ C = - 9 , значит F(x) = x³/3 -9 .
б) F(x) = ∫ydx =∫( 2cos²(x/2) - 1 )dx = ∫cos(x)dx = sin(x)+C
т.к. точка M(π/3; 16) ∈ гр. F(x) , то 16 = sin(π/3)+ C ⇒C =16-√3 /2=(32-√3)/2 значит F(x) = sin(x)+(32-√3)/2 .
* * *cos²α =(1+cos2α) / 2 * * *
! 2cos²(x/2) - 1=cos²(x/2) - ( 1-cos²(x/2) ) =cos²(x/2)-sin²(x/2) =cos2*x/2 =cosx
Поделитесь своими знаниями, ответьте на вопрос:
Решение неравенство : 2х+3/(х-2)(х-1)> =0
Отметим эти точки на числовой прямой:
___-[-1,5]+(1)-(2)+
ответ: x e [-1,5; 1) U (2; + беск.)