garunkhachatryan
?>

Докажите что цифры sqrt 2, sqrt 3, sqrt 5 являются иррациональными

Алгебра

Ответы

rusdtver
Правильное решение данной задачи (в самом общем виде) можно найти в "Кванте" номер 2 за 1972 год, вот ссылка: http://kvant.mccme.ru/1972/02/irracionalnost_summy_radikalov.htm
agutty3
Преобразуем левую часть:
sin^{4} x + cos^{4} x = ( sin^{2}x) ^{2} + (cos^{2}x) ^{2} = ( sin^{2}x + cos^{2}x) ^{2} - \\ 2 sin^{2} x cos^{2} x = 1 - 2 sin^{2} x cos^{2} x

Далее:
1 - \frac{1}{2} * 4 sin^{2} x cos^{2}x = 1 - \frac{1}{2} sin^{2} 2x
Таким образом, получаем уравнение:
1 - \frac{1}{2} sin^{2}2x = -\frac{25}{8} + \frac{1}{ sin^{2}2x }
Теперь понятно, что можно ввести замену t = sin^{2}2x и продолжать решение уже дробно-рационального уравнения.

Советую запомнить приём, который я здесь употребил. Он состоит вот в чём.
Мы помним формулу сокращённого умножения:
(x+y)^{2} = x^{2} + 2xy + y^{2}
Отсюда я могу легко выразить сумму квадратов:
x^{2} + y^{2} = (x+y)^{2} - 2xy
Думаю, Вы уже догадались, что в нашем уравнении сыграло роль x, а что y.
Этот приём встречается очень часто в самых неожиданных ситуациях, так что рекомендую запомнить его.
Уравнение можно было решить и по формулам понижения степени(правда, это значительно было бы сложнее). Но в целом, можно рассмотреть и такой вариант, но я показал проще.

Делаем замену:
t = sin^{2} 2x, 0 \leq t \leq 1
После замены получаем:
1 - \frac{t}{2} = - \frac{25}{8} + \frac{1}{t}
Умножаем обе части уравнения на 8t(с дробями работать крайне неудобно, да и t в знаменателе нам ни к чему - просто запомним, что он должен быть отличным от 0, а потом проверим это):
8t - 4 t^{2} + 25t - 8 = 0
4 t^{2} - 33t + 8 = 0
Решаем квадратное уравнение(кстати, t уже отличен от 0. В этом можно убедиться прямой подстановкой)
D = 33^{2} - 4 * 4 * 8 = 961 \\ 
 t_{1} = \frac{33 - 31}{8} = \frac{1}{4}; t_{2} = \frac{33 + 31}{8} = 8 \ \textgreater \ 1 - этот корень не удовлетворяет нашему уравнению.
Следовательно, возвращаясь к переменной x, получаем простейшее уравнение:
sin^{2} 2x = \frac{1}{4} \\ \frac{1 - cos 4x}{2} = \frac{1}{4}
Отсюда
cos 4x = \frac{1}{2} \\ 4x = +- \frac{ \pi }{3} + 2 \pi n \\ x = +- \frac{ \pi }{12} + \frac{ \pi n}{2}
Это и есть ответ. Напомню, что при решении простейшего уравнения я использовал формулу понижения степени, а в конечном результате n - целое число.
Coverplus30
Х²-5х+6=0           у²+8у+16=0          7х²-3х-4=0
х1+х2=5               у1+у2=-8              D=9+4*4*7=121=11²
х1*х2=6                у1*у2=16                х1=(3+11)/14=1                 х1=1
х1=3                       у1=4                       х2=(3-11)/14=8/14=4/7      х2=4/7               
х2=2                      у2=4        
                                                              8х²+5х-3=0                                 
                                                               D=25+4*3*8=121=11²
                                                                 х1=(-5+11)/16=6/16=3/8      х1=3/8    
                                                                х2=(-5-11)/16=-1                 х2=-1

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Докажите что цифры sqrt 2, sqrt 3, sqrt 5 являются иррациональными
Ваше имя (никнейм)*
Email*
Комментарий*