1 x 2 17 x 2 ± 4x + 3 33 x 2 ± 7x + 12 2 x 2 – 1 18 x 2 ± 4x + 4 34 x 2 ± 8x 3 x 2 – 4 19 x 2 ± 4x – 5 35 x 2 ± 8x + 7 4 x 2 –9 20 x 2 ± 4x – 12 36 x 2 ± 8x – 9 5 x 2 ± x 21 x 2 ± 5x 37 x 2 ± 8x + 12 6 x 2 ± x – 2 22 x 2 ± 5x + 4 38 x 2 ± 9x 7 x 2 ± x – 6 23 x 2 ± 5x ± 6 39 x 2 ± 9x + 8 8 x 2 ± x – 12 24 x 2 ± 6x 40 x 2 ± 9x – 10 9 x 2 ± 2x 25 x 2 ± 6x + 5 41 x 2 ± 10x 10 x 2 ± 2x + 1 26 x 2 ± 6x – 7 42 x 2 ± 10x + 9 11 x 2 ± 2x – 3 27 x 2 ± 6x + 8 43 x 2 ± 10x – 11 12 x 2 ± 2x – 8 28 x 2 ± 6x + 9 44 x 2 ± 11x 13 x 2 ± 3x 29 x 2 ± 7x 45 x 2 ± 11x + 10 14 x 2 ± 3x – 4 30 x 2 ± 7x + 6 46 x 2 ± 11x – 12 15 x 2 ± 3x – 10 31 x 2 ± 7x – 8 47 x 2 ± 12x 16 x 2 ± 4x 32 x 2 ± 7x + 10 48 x 2 ± 12x + 11
lezzzzka5510
03.09.2021
Пусть v1 км/ч- скорость первого автомобиля, v2 км/ч - второго, t - время от старта автомобилей до их встречи. Тогда первый автомобиль находился в пути время t1=t+1,6 ч, а второй - время t2=t+2,5 ч, поэтому v1*(t+1,6)=v2*(t+2,5)=180. Кроме того, v1*t+v2*t=180. Получаем систему уравнений:
v1*(t+1,6)=180 v2*(t+2,5)=180 v1*t+v2*t=180
Из первого уравнения находим v1=180/(t+1,6), из второго - v2=180/(t+2,5). Подставляя эти выражения в третье уравнение, получаем уравнение:
180*t/(t+1,6)+180*t/(t+2,5)=180, или t/(t+1,6)+t/(t+2,5)=1.Отсюда следует уравнение t*(t+2,5)+t*(t+1,6)=t²+4,1*t+4, или 2*t²=t²+4. Тогда t²=4 и t=√4=2 ч. Отсюда v1=180/(2+1,6)=50 км/ч и v2=180/(2+2,5)=40 км/ч. ответ: 50 и 40 км/ч.