На 1 месте может быть любая цифра от 1 до 9, то есть 9 вариантов.
Н 2, 3, 4 и 5 месте - любая от 0 до 9, то есть по 10 вариантов.
Всего 9*10*10*10*10 = 90 000 вариантов.
а) Все цифры разные. На 1 месте может быть любая цифра от 1 до 9 - 9 вариантов.
На 2 месте может быть 0 и любая из 8 других цифр, но не та, которая на 1 месте. - 9 вариантов.
На 3 месте может быть любая из 8 оставшихся цифр. На 4 - любая из 7, на 5 - любая из 6.
Всего 9*9*8*7*6 = 27216 вариантов. Вероятность равна 27216/90 000 = 0,3024
б) Все цифры одинаковые - таких вариантов всего 9, от 11111 до 99999. Вер-сть 1/10 000 = 0,0001
в) Все цифры нечетные На каждом месте может быть одна из 5 цифр - 1,3,5,7,9.
Всего 5*5*5*5*5 = 3125 вариантов. Вероятность равна 3125/90 000 = 0,03472
2)Из обеих урн достают по одному шару.
Какова вероятность, что они будут одного цвета?
5/24*10/24 + 11/24*8/24 + 8/24*6*24 = 31/96 = 32.3%
ответ : 32.3%
3) ПО ОПРЕДЕЛЕНИЮ вероятность это отношение числа нужных вариантов к общему числу вариантов (какого-то события). То есть 2*9!/10! = 1/5;
4)Где-то 50 процентов
Дальше я хз
Объяснение:
ответ: В 10 классе 8 олимпиад
Объяснение:
С 7 по 11 - это 5 классов. 31:5 =6 и 1 в остатке. Т.е. в среднем, в год 6 олимпиад. Следовательно в 7 классе было меньше 6 олимпиад.
"В 11 классе количество олимпиад, в которых она приняла участие, возросло в 3 раза по сравнению с 7 классом", значит, число олимпиад в 11 классе делится на 3. Можно предположить, что это 9 или 12, тогда в 7 классе было 3 или 4 олимпиады. Проверяем:
классы: 7 8 9 10 11
количество олимпиад: 4 5 6 7 12 = 34 - это минимум при данном предположении - не подходит. Тогда остается в 7 классе - 3 и в 11 - 9 олимпиад. Получаем:
классы: 7 8 9 10 11
количество олимпиад: 3 4 5 6 9 = 27 Надо добавить еще 4. Эти 4 единицы можно добавить в 8, 9 и 10 классы. Тогда получаем:
классы: 7 8 9 10 11
количество олимпиад: 3 5 6 8 9 = 31. А по-другому распределить эти четыре единицы так, что бы "В каждом следующем учебном году она участвовала в бОльшем количестве олимпиад, чем в предыдущем" не получится. Таким образом, ответ: В 10 классе Настя приняла участие в 8 олимпиадах.
Поделитесь своими знаниями, ответьте на вопрос:
Решить . запишите выражение [(a^-2+3ab)^2/b^-3+3a^3b^-2]-3a^-1b^4 в виде несократимой дрoби без степеней с отрицательными показателями