alyonafialka
?>

Решите систему уравнений 2[3x+2y]+9=4x+21 2x+10=3-[6x+5y]

Алгебра

Ответы

Nikita_Lina1305
2(3x+2y)+9=4x+21  2x+10=3-(6x+5y)   6x+4y+9-4x-21   2x+10=3-6x-5y   2x+4y-12=0   8x+5y+7=0    2x=-4y+12   4(-4y+12)+5y+7=0   2x=-4y+12   -16y+48+5y+7=0    2x=-4y+12    -11y=-55   2x=-4y+12    y=5   2x=-20+12    y=5    2x=-8     y=5    x=-4 ответ:x=-4 y=5
annademidova-74
1. В сентябре 30 дней. Дни которые кратны 5: 5;10;15;20;25;30 - всего 6
Всего благоприятных событий: 6. Всего все возможных событий: 30.
Искомая вероятность : P= \dfrac{6}{30}=0.2

2. Вероятность того, что на монете выпала решка равна 1/2, а вероятность того, что на игральной кости выпало нечетное число очков равно 3/6=1/2. Поскольку событий независимы, то вероятность того, что выпали на монете решка, а на кости нечетное число очков равна 1/2 * 1/2 = 1/4.

3. Найдем вероятность того, что карта король черной масти:
Всего все возможных событий: C^1_{36}=36. Всего благоприятных событий: C^2_{4}
Тогда вероятность P'= \dfrac{C^1_{2}}{C^1_{36}} = \dfrac{ 2 }{36 } = \dfrac{1}{18}

Тогда вероятность того, что карта не король черной масти: 1-\dfrac{1}{18}=\dfrac{17}{18}

4. Всего все возможных событий: 36
сумма выпавших число очков не больше 3: {1;2}, {2;1}, {1;1}- всего 3 (благоприятных событий)
Вероятность того, что сумма выпавших число очков не больше 3 равна \dfrac{3}{36} = \dfrac{1}{12}

Тогда вероятность того, что сумма выпавших число очков не меньше 3 равна 1-\frac{1}{12} =\frac{11}{12}

5. Всего все возможных событий: C^2_{7}. Взять 2 красных шаров можно C^2_4

Искомая вероятность: P= \dfrac{C^2_4}{C^2_{7}}= \dfrac{ \frac{4!}{2!2!} }{ \frac{7!}{5!2!} }= \dfrac{3\cdot 4}{6\cdot 7} = \dfrac{2}{7}
irinanikulshina144
1. В сентябре 30 дней. Дни которые кратны 5: 5;10;15;20;25;30 - всего 6
Всего благоприятных событий: 6. Всего все возможных событий: 30.
Искомая вероятность : P= \dfrac{6}{30}=0.2

2. Вероятность того, что на монете выпала решка равна 1/2, а вероятность того, что на игральной кости выпало нечетное число очков равно 3/6=1/2. Поскольку событий независимы, то вероятность того, что выпали на монете решка, а на кости нечетное число очков равна 1/2 * 1/2 = 1/4.

3. Найдем вероятность того, что карта король черной масти:
Всего все возможных событий: C^1_{36}=36. Всего благоприятных событий: C^2_{4}
Тогда вероятность P'= \dfrac{C^1_{2}}{C^1_{36}} = \dfrac{ 2 }{36 } = \dfrac{1}{18}

Тогда вероятность того, что карта не король черной масти: 1-\dfrac{1}{18}=\dfrac{17}{18}

4. Всего все возможных событий: 36
сумма выпавших число очков не больше 3: {1;2}, {2;1}, {1;1}- всего 3 (благоприятных событий)
Вероятность того, что сумма выпавших число очков не больше 3 равна \dfrac{3}{36} = \dfrac{1}{12}

Тогда вероятность того, что сумма выпавших число очков не меньше 3 равна 1-\frac{1}{12} =\frac{11}{12}

5. Всего все возможных событий: C^2_{7}. Взять 2 красных шаров можно C^2_4

Искомая вероятность: P= \dfrac{C^2_4}{C^2_{7}}= \dfrac{ \frac{4!}{2!2!} }{ \frac{7!}{5!2!} }= \dfrac{3\cdot 4}{6\cdot 7} = \dfrac{2}{7}

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите систему уравнений 2[3x+2y]+9=4x+21 2x+10=3-[6x+5y]
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

andreevaanastsiyao82
kozak8824
andrewa
Sonyamaslo6
aregaa
Nataliyaof
Maksim Lokhov
qwe54344
Svetlana1335
akrivoz
sodrugestvo48
ermisyareg436
maxchemaxim14
nv6634
Державина