Объяснение:
1)Найдите значение функции y= - 2x+4, если значение аргумента равно -6
х= -6
у= -2*(-6)+4=12+4=16
При х= -6 у=16
2) Укажите, для какого значения аргумента значение функции y=4x - 5 равно -4.
у= -4
-4=4х-5
-4х= -5+4
-4х= -1
х= -1/-4
х=0,25
3) Укажите координаты точки пересечения графика функции
у= -0,5х - 5 с осью абсцисс.
График пересекает ось Ох при у=0
у=0
0= -5х-5
5х= -5
х= -1
Координаты точки пересечения графиком оси Ох (-1; 0)
4) Задайте формулой линейную функцию, если известно к = -4 и прямая проходит через точку А(1;5).
y = -4х +9
5= -4*1+9
5=5
5) Графиком какой из данных функций является прямая, проходящая параллельно Ох:
у =1/9
6. Не выполняя построений ,найдите координаты точки пересечения графиков линейных функций у= - 2х-10 и у = 3х-5.
- 2х-10 = 3х-5
-2х-3х= -5+10
-5х=5
х= -1
у=3*(-1)-5
у= -3-5
у= -8
Координаты точки пересечения графиков (-1; -8)
Объяснение:
Для того, чтобы упростить выражение xy(x + y) - (x^2 + y^2)(x - 2y) откроем скобки и выполним приведение подобных слагаемых.
Для открытия первой скобки используем распределительный закон умножения относительно сложения a * (b + c) = a * b + a * c.
Для открытия второй скобки используем правило умножения скобки на скобку, а так же правило умножения скобки на скобку.
xy(x + y) - (x^2 + y^2)(x - 2y) = x^2y + xy^2 - (x^3 - 2x^2y + xy^2 - 2y^3) = x^2y + xy^2 - x^3 + 2x^2y - xy^2 + 2y^3 = 3x^2y - x^3 + 2y^3.
Поделитесь своими знаниями, ответьте на вопрос:
Представьте выражение в виде многочлена стандартного вида: 2х × (2х+3у) - (х+у)² мерси)