Tochkamail370
?>

Вмагазин три ящика апельсинов. в первом ящике было в 1.5 раза больше апельсинов, чем во втором, а во втором на 4 кг меньше, чем в третьем. сколько кг апельсинов было в первом ящике, если всего в магазин 39 кг?

Алгебра

Ответы

Semenovt
Х кг апельсинов было в третьем ящике
х-4 - во втором
1,5(х-4) - в первом
х+ (х-4)+1,5(х-4)=39
х+х-4+1,5х-6=39
3,5х=49
х=14 в третьем
10 - во втором
15 кг -в первом
kobzev-e
Импликация раскрывается так:
A → B = ~A V B (здесь ~A = НЕ А)
Эквиваленция раскрывается так:
A ↔ B = (~A /\ ~B) V (A /\ B)
Подставляем:
1. (A /\ B) → (A V B) = ~(A /\ B) V (A V B) = ~A V ~B V A V B = 1
Формула тождественно истинна
2. (A V B) → (A /\ B) = ~(A V B) V (A /\ B) = (~A /\ ~B) V (A /\ B) = A ↔ B
Формула является выполнимой
3. (A V (B ↔ A)) /\ (A → B) = (A V (~B /\ ~A) V (B /\ A)) /\ (~A V B) = Z
По закону поглощения A V (B /\ A) = A, поэтому
Z = (A V (~B /\ ~A)) /\ (~A V B) = (A V ~B) /\ (A V ~A) /\ (~A V B) =
= (A V ~B) /\ 1 /\ (~A V B) = (A V ~B) /\ (~A V B) =
= (A /\ ~A) V (~B /\ ~A) V (A /\ B) V (~B /\ B) = (~B /\ ~A) V (A /\ B)  = A ↔ B
Формула является выполнимой
echervyakov
Левая часть неравенства должна существовать, поэтому 
a + x >= 0,
a - x >= 0

Переписываем систему в виде
-a <= x <= a,
|x| <= a
откуда видно, что a >= 0.
Можно сразу записать, что если a < 0, то решений нет.

Тогда обе части исходного неравенства неотрицательные, и можно возводить в квадрат.
a + x + 2sqrt(a^2 - x^2) + a - x > a^2
sqrt(a^2 - x^2) > a(a - 2)/2

Если правая часть отрицательна, то решение неравенства - все значения, при которых корень существует.
a(a - 2)/2 < 0 при 0 < a < 2, так что еще одна часть ответа такова: если 0 < a < 2, то -a <= x <= a.

Осталось рассмотреть случай, когда a(a - 2) >= 0. Тогда вновь можно возводить неравенство в квадрат.
a^2 - x^2 > (a^4 - 4a^3 + 4a^2)/4
x^2 < a^3 (4 - a)/4.

У этого неравенства есть шанс иметь решения, если правая часть строго положительна, поэтому предпоследняя часть ответа: если a = 0 или a >= 4, решений нет. Осталось рассмотреть последний случай 2 <= a < 4.

Заметим, что при таких a правая часть меньше a^2, ведь 
a^3 (4 - a) / 4 / a^2 = a (4 - a) / 4 < 2 * (4 - 2) / 4 = 1 (известно, что квадратичная парабола a (4 - a) / 4 достигает максимального значения в вершине), поэтому все корни существуют, и последняя часть ответа: если 2 <= a < 4, то -sqrt(a^3 (4 - a))/2 < x < sqrt(a^3 (4 - a))/2.

Собираем всё в одно и получаем ответ.
ответ. Если 0 < a < 2, то -a <= x <= a; если 2 <= a < 4, то -sqrt(a^3 (4 - a))/2 < x < sqrt(a^3 (4 - a))/2, для остальных a решений нет.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вмагазин три ящика апельсинов. в первом ящике было в 1.5 раза больше апельсинов, чем во втором, а во втором на 4 кг меньше, чем в третьем. сколько кг апельсинов было в первом ящике, если всего в магазин 39 кг?
Ваше имя (никнейм)*
Email*
Комментарий*