Рузиев_Давиденко
?>

С, модуль "". точки m и n лежат на стороне ас треугольника авс на расстояниях соответственно 12 и 21 от вершины а.найдите радиус окружности, проходящей через точки м и n касающейся луча ав, если косинус угла вас= корень из семи делить на 4. p.s напишите как решить это здание.буду !

Алгебра

Ответы

ShALIGINA
По теореме о касательной и секущей:
AE^2=AM*AN \\AE=\sqrt{AM*AN}=\sqrt{12*21}=\sqrt{252}=2\sqrt{63}=6\sqrt{7} \\
в треугольнике AEM найдем EM по теореме косинусов:
EM^2=AE^2+AM^2-2AE*AM*cos(BAC) \\EM^2=252+144-2*6\sqrt{7}*12* \frac{\sqrt{7}}{4} \\EM^2=396- \frac{2*12*7*6}{4}=396- 252=144 \\EM=12
Также в треугольнике AEN найдем сторону EN:
EN^2=AE^2+AN^2-2AE*AN*cos(BAC) \\EN^2=252+441-2*6\sqrt{7}*21* \frac{\sqrt{7}}{4} \\EN^2=693- \frac{2*7*21*6}{4}=693-441=252 \\EN=6\sqrt{7}
так как EN=AE, то треугольник AEN - равнобедренный, следовательно угол EAN равен углу ENA.
используя основное тригонометрическое тождество найдем sin ENA:
cos^2(ENA)+sin^2(ENA)=1 \\cos(ENA)=cos(EAN)= \frac{\sqrt{7}}{4} \\sin(ENA)=\sqrt{1-\frac{7}{16} }= \sqrt{ \frac{9}{16}} = \frac{3}{4}
по теореме синусов найдем радиус окружности:
2R= \frac{EM}{sin(ENA)} \\2R=12: \frac{3}{4} \\2R=16 \\R=8
ответ: R=8

С,модуль . точки m и n лежат на стороне ас треугольника авс на расстояниях соответственно 12 и 21
Nikolaevna Malika1511
1)Берешь длину отрезка АБ и вычитаешь из его известные кусочки
Нарисуй задачку на бумаге и сама увидишь как все просто.

2)сумма смежных углов=180⁰
пусть х-первый угол,тогда х+20-второй.
х+х+20=180
2х=160
х=80⁰-первый угол.
а)80⁰+20⁰=100⁰-второй угол.
3)Вариант 1:
< ВОД = < СОА вертикальные углы

Пусть < СОА = x
Тогда < АОК = 118 -x

< COA + < AOK = 180

x + (118 -x) + (118-x) = 180

x = 56 градусов--- это и есть угол ВОД
Вариант 2:
Обозначь углы AOK и KOD за х, а угол COB за 2х
COD-KOD=COK
180-х=118
Х=62
COD-COB=BOD
180-(62•2)=56
voen-torg
Это легко решить графически

Строишь графики функций y = x² и y = x + 5, но в системе координат с дополнительной осью Oy_{1}, параллельной оси Оy, но сдвинутой на 4 вправо, т.е. провести ее надо через точку 4 по оси Ох.
Построил? Теперь смотришь на знаки. Если на каком-то отрезке оси Ох знаки функции одинаковы, т.е. их графики одновременно или выше, или ниже оси Ох, то нужное нам произведение больше нуля, если находятся по разные стороны от оси Ох, то оно меньше нуля.

Т.е. в нашем случае ответ будет x ∈ (-бесконечности; -1], или x ≤ -1

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

С, модуль "". точки m и n лежат на стороне ас треугольника авс на расстояниях соответственно 12 и 21 от вершины а.найдите радиус окружности, проходящей через точки м и n касающейся луча ав, если косинус угла вас= корень из семи делить на 4. p.s напишите как решить это здание.буду !
Ваше имя (никнейм)*
Email*
Комментарий*