найдём точку пересечения прямых
4y=3x ⇒ 12y=9x ⇒ 5x+12y=5x+9x=14x ⇒ 14x=10 ⇒ x = 5/7 ⇒ 4y=3·5/7=15/7 ⇒ y=15/28
найдём векторы нормали
-3x+4y=0 ⇒ n₁(-3;4)
5x+12y-10=0 ⇒ n₂(5;12)
Проверим, острый ли угол между n₁ и n₂ (равносильно n₁·n₂ > 0)
n₁·n₂=-3·5+4·12=-15+48 > 0
Находим единичные вектора нормали
n₁'=n₁/|n₁|=(-3;4)/√(3²+4²)=(-3/5;4/5)
n₂'=n₂/|n₂|=(5;12)/√(5²+12²)=(5/13;12/13)
Находим вектор нормали к биссектрисе острого угла между прямыми
n₃=n₁'+n₂'=(-14/65;112/65)
Другим вектором нормали будет n₃'=65/14 n₃=(-1;8)
Составляем уравнение биссектрисы по точке (5/7;15/28) и вектору нормали n₃
n₃'·(x,y)=n₃'·(5/7;15/28) ⇒ -x + 8y = -5/7 + 8 ·15/28 = 25 / 7, или
-7x + 56y = 25
другой возможный вариант решения, использовать тот факт, что любая точка биссектрисы равноудалена от двух данных прямых, и формулу расстояния от точки до прямой
|4y-3x|/√(4²+3²) = |5x+12y-10|/√(5²+12²)
13|4y-3x| = 5|5x+12y-10|
13(4y-3x) = ±5(5x+12y-10)
Один вариант знака даёт биссектрису острого угла, второй — биссектрису тупого угла, потом останется только разобраться, какой вариант к какой биссектрисе относится.
а) 3х²-12х-(х²-16х+64)= 3х²-12х-х²+16х-64= 2х²+4х-64
б) -40х+5х²+2(36+12х+х²)= -40х+5х²+72+24х+2х²= 7х²-16х+72
в) 6х-х²-6+х+(4+12х+9х²)= 8х²+19х-2
г) 3-х-18х+6х²-3(х²+10х+25)= 3-х-18х+6х²-3х²-30х-75= 3х²-49х-72
а) 8х-х²-(х²-16)= 8х-х²-х²+16= -2х²+8х+16
б) 3х+х²+12+4х+(х²-49)= 2х²+7х-37
в) 4+4х-2х-2х²-5(х²-16)= 4+2х-2х²-5х²+80= -7х²+2х+84
г) 4+4х-2(9х²-16)= 4+4х-18х²+32= -18х²+4х+36
Если ты младше 8 класса и здесь не надо находить корни квадратных уравнений (уравнения эти, кстати, в итоге везде получились), то это всё) А то в ответе я их "причесала" по структуре квадратного уравнения)
Поделитесь своими знаниями, ответьте на вопрос:
Срешением, ! даны векторы a {-1; 1; 1}, b{0; 2; -2}, c{-3; 2; 0}. найдите координаты вектора -a+2c-b
-a+2c-b=(1,-1,-1)+(-6,4,0)-(0,2,-2)=(1-6-0,-1+4-2,-1+0+2)=(-5,1,1)