1) Шаблон y=x²
Вершина в точке (2;-3)
Нули функции
(x-2)²-3=0 ⇒
(x-2)²=3
x-2= -√3 или х-2=√3
х=2-√3 или х=2+√3
2) Шаблон y=x²
Вершина в точке (-2;-1)
Нули функции
(x+2)²-1=0 ⇒
(x+2)²=1
x+2= -1 или х+2=1
х=-3 или х=-1
3) Шаблон y=x²
Вершина в точке (2,5;-3,4)
Нули функции
(x-2,5)²-3,4=0 ⇒
(x-2,5)²=3,4
x-2,5= -√3,4 или x-2,5=√3,4
х= 2,5 -√3,4 или х=2,5 +√3,4
4)Шаблон y= - x²
Вершина в точке (1;4)
Нули функции
-(x-1)²+4=0 ⇒
(x-1)²=4
x-1= -2 или x-1=2
х= -1 или х=3
5)Шаблон y= - x²
Вершина в точке (-3;-3)
Нули функции
-(x+3)²-3=0 ⇒
(x+3)²=-3
уравнение не имеет корней.
Парабола не пересекает ось Ох
6)Шаблон y= - x²
Вершина в точке (3,2;2,4)
Нули функции
-(x-3,2)²+2,4=0 ⇒
(x-3,2)²=2,4
x-3,2= - √2,4 или x-3,2= √2,4
x= 3,2 - √2,4 или x = 3,2+ √2,4
Область определения функции - значения аргумента(x) при которых функция(y) имеет смысл.
a)Так как никаких ограничений нет(x не стоит в знаменателе, под знаком корня и другое), то x принадлежит R.
б)Так как в знаменателе стоит линейное уравнение, то x будет принадлежать R, кроме значения знаменателя, равного 0.
x+7=0
x=-7
Значит, x принадлежит R, кроме x=-7
Для того, чтобы найти область значения функции на промежутке нужно подставить вместо x крайние значения.
y=(2×(-1)+8)/7=6/7
y=(2×5+8)/7=18/7=2 4/7
Значит, y принадлежит промежутку [6/7; 2 4/7]
Поделитесь своими знаниями, ответьте на вопрос:
Преобразуйте в дробь выражения a) a^2+3/a3-3-а/3а б) x/x-1+x/x+1 в) x/x-2y-4y^2/x^2--2xy г) 2a+b-4ab/2a+b
(a²+3)/a³-(3-a)/3a=(3a²+9-3a²+a³)/3a³=(a³+9)/3a³
2
x/(x-1)+x/(x+1)=(x²+x+x²-x)/(x²-1)=2x²/(x²-1)
3
x/(x-2y)-4y²/x(x-2y)=(x²-4y²)/x(x-2y)=(x-2y)(x+2y)/x(x-2y)=(x+2y)/x
4
2a+b -4ab/(2a+b)=(4a²+4ab+b²-4ab)/(2a+b)=(4a²+b²)/(2a+b)