z=ln(x+e^(-y))
dz/dx=1/(x+e^(-y))*(x+e^(-y))'=1/(x+e^(-y))
d2z/dx2=((x+e^(-y))^(-1))'=-(x+e^(-y))^(-2)*(x+e^(-y))'=-1/(x+e^(-y))^2
d3z/dx2dy=(-(x+e^(-y))^(-2))'=-(-2(x+e^(-y)))^(-3)*(x+e^(-y))'=2(x+e^(-y))^(-3)*(-e^(-y))=-2e^(-y)/(x+e^(-y))^3
dz/dy=1/(x+e^(-y))*(x+e^(-y))'=1/(x+e^(-y))*(-e^(-y))=-e^(-y)/(x+e^(-y))
d2z/dydx=(-e^(-y)*(x+e^(-y))^(-1))'=-e^(-y)*((x+e^(-y))^(-1))'=
-e^(-y)*(-((x+e^(-y))^(-2)))*(x+e^(-y))'=e^(-y)/(x+e^(-y))^2
d3z/dydx2=(e^(-y)/(x+e^(-y))^2)'=e^(-y)((x+e^(-y))^(-2))'=
e^(-y)*(-2((x+e^(-y))^(-3)))*(x+e^(-y))'=-2e^(-y)/(x+e^(-y))^3
и все
-2e^(-y)/(x+e^(-y))^3-(-2e^(-y)/(x+e^(-y))^3)=-2e^(-y)/(x+e^(-y))^3+2e^(-y)/(x+e^(-y))^3=0
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Можно ли заплатить 25 рубл. 11 монет. достоинством (1, 3, 5) рубл? если да, то все варианты
Представим, что выбранные монеты пожертвовали рубль на благотворительность, а потом решили отдать туда же половину своего номинала.
После первого процесса сумма уменьшилась на 11 и стала равна 14 рублям, а номиналы монет стали 0, 2 и 4 рубля, после второго - сумма стала в два раза меньше (7 рублей), а новые номиналы - 0, 1 и 2 рубля.
Итак, нужно найти все выдать 7 рублей 11 монетами по 0, 1 и 2 рубля. Понятно, что двухрублёвых монет должно быть не больше трёх - иначе сумма была бы больше 4 * 2 = 8 рублей, а на самом деле всего 7.
Перебираем варианты:
- нет двухрублевых монет. Надо выдать 7 рублей - это 7 монет по 1 рублю и 11 - 0 - 7 = 4 монеты по 0 рублей.
- одна двухрублевая монета. Осталось выдать 5 рублей - 5 монет по 1 рублю и 11 - 1 - 5 = 5 монет по 0 рублей.
- две монеты по 2 рубля. Осталось выдать 3 рубля - 3 монеты по 1 рублю, 11 - 2 - 3 = 6 монет по 0 рублей.
- три монеты по 2 рубля. Осталось выдать 1 рубль - 1 монета по 1 рублю, 11 - 3 - 1 = 7 монет по 0 рублей.
А теперь монеты одумались и забрали свои пожертвования обратно. Получились четыре заплатить 25 рублей:
- 0 по 5₽ + 7 по 3₽ + 4 по 1₽
- 1 по 5₽ + 5 по 3₽ + 5 по 1₽
- 2 по 5₽ + 3 по 3₽ + 6 по 1₽
- 3 по 5₽ + 1 по 3₽ + 7 по 1₽