Васильевич Валерьевна
?>

Можно ли заплатить 25 рубл. 11 монет. достоинством (1, 3, 5) рубл? если да, то все варианты

Алгебра

Ответы

goodsled
Пусть мы заплатили так, как требуется по условию.
Представим, что выбранные монеты пожертвовали рубль на благотворительность, а потом решили отдать туда же половину своего номинала. 
После первого процесса сумма уменьшилась на 11 и стала равна 14 рублям, а номиналы монет стали 0, 2 и 4 рубля, после второго - сумма стала в два раза меньше (7 рублей), а новые номиналы - 0, 1 и 2 рубля.

Итак, нужно найти все выдать 7 рублей 11 монетами по 0, 1 и 2 рубля. Понятно, что двухрублёвых монет должно быть не больше трёх - иначе сумма была бы больше 4 * 2 = 8 рублей, а на самом деле всего 7.

Перебираем варианты:
- нет двухрублевых монет. Надо выдать 7 рублей - это 7 монет по 1 рублю и 11 - 0 - 7 = 4 монеты по 0 рублей.
- одна двухрублевая монета. Осталось выдать 5 рублей - 5 монет по 1 рублю и 11 - 1 - 5 = 5 монет по 0 рублей.
- две монеты по 2 рубля. Осталось выдать 3 рубля - 3 монеты по 1 рублю, 11 - 2 - 3 = 6 монет по 0 рублей.
- три монеты по 2 рубля. Осталось выдать 1 рубль - 1 монета по 1 рублю, 11 - 3 - 1 = 7 монет по 0 рублей.

А теперь монеты одумались и забрали свои пожертвования обратно. Получились четыре заплатить 25 рублей:
- 0 по 5₽ + 7 по 3₽ + 4 по 1₽
- 1 по 5₽ + 5 по 3₽ + 5 по 1₽
- 2 по 5₽ + 3 по 3₽ + 6 по 1₽
- 3 по 5₽ + 1 по 3₽ + 7 по 1₽
natalia595977
#3/ 1.Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля (например, целых, действительных или комплексныхчисел), которая представляет собой совокупность строк и столбцов, на пересечении которых находятся её элементы. Количество строк и столбцов матрицы задают размер матрицы/. Виды: Виды матриц: квадратная, студенчатая, нулевая, дигональная, единичная, скалярная, треугольная и другие
2. Для матрицы определены следующие алгебраические операции:сложение матриц, имеющих один и тот же размер;умножение матриц подходящего размера (матрицу, имеющую n столбцов, можно умножить справа на матрицу, имеющую n строк);в том числе умножение на матрицу вектора (по обычному правилу матричного умножения; вектор является в этом смысле частным случаем матрицы);умножение матрицы на элемент основного кольца или поля (то есть скаляр).
moisalexx7

z=ln(x+e^(-y))

dz/dx=1/(x+e^(-y))*(x+e^(-y))'=1/(x+e^(-y))

d2z/dx2=((x+e^(-y))^(-1))'=-(x+e^(-y))^(-2)*(x+e^(-y))'=-1/(x+e^(-y))^2

d3z/dx2dy=(-(x+e^(-y))^(-2))'=-(-2(x+e^(-y)))^(-3)*(x+e^(-y))'=2(x+e^(-y))^(-3)*(-e^(-y))=-2e^(-y)/(x+e^(-y))^3

dz/dy=1/(x+e^(-y))*(x+e^(-y))'=1/(x+e^(-y))*(-e^(-y))=-e^(-y)/(x+e^(-y))

d2z/dydx=(-e^(-y)*(x+e^(-y))^(-1))'=-e^(-y)*((x+e^(-y))^(-1))'=

-e^(-y)*(-((x+e^(-y))^(-2)))*(x+e^(-y))'=e^(-y)/(x+e^(-y))^2

d3z/dydx2=(e^(-y)/(x+e^(-y))^2)'=e^(-y)((x+e^(-y))^(-2))'=

e^(-y)*(-2((x+e^(-y))^(-3)))*(x+e^(-y))'=-2e^(-y)/(x+e^(-y))^3

и все

-2e^(-y)/(x+e^(-y))^3-(-2e^(-y)/(x+e^(-y))^3)=-2e^(-y)/(x+e^(-y))^3+2e^(-y)/(x+e^(-y))^3=0

Объяснение:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Можно ли заплатить 25 рубл. 11 монет. достоинством (1, 3, 5) рубл? если да, то все варианты
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Eduard Popik
ambiente-deco516
ivanovk3599
Igor1406
Исмагилова_Саният
borisowaew
alex13izmailov
nadjasokolova2017
snk7777202
vera4
Nv-444
AntonovaAvi1716
alexsan-0837
Анатольевна
gaydukov5706