Двое рабочих, работая вместе, завершили работу за 6 дней. сколько дней потребовалось бы каждому рабочему на выполнение этой работы, если одному для этого требуется на 5дней меньше, чем другому?
5x+6y=107 6x=107-6y x=(107-6y)/6 x=(107-6y)/6 4x-2y=4 4x-2y=4 2x-y=2 2((107-6y)/6)-y=2 x=(107-6y)/6 x=(107-6y)/6 y=(214-12y)/6-2 y=((107-6y)/3)-2 дальше уже не трудно, разберешься сам.
Seid-ZadeNadezhda1769
28.08.2022
Находим f`(x)=12x-3x² приравниваем f`(x)=0 12x-3x²=0 3x(4-x)=0 x=0 или х=4 обе точки принадлежат указанному отрезку. располагаем точки отрезка на числовой прямой и находим знаки производной на каждом отрезке: - + - [- min max f(0)=6·0²-0³=0 - наименьшее значение функции f(x) на [-1; 5] f(4)=6·4²-4³ =32 - наибольшее значение функции f(x) на [-1; 5]
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Двое рабочих, работая вместе, завершили работу за 6 дней. сколько дней потребовалось бы каждому рабочему на выполнение этой работы, если одному для этого требуется на 5дней меньше, чем другому?
первый рабочий- 1/x, тогда второй рабочий-1/(x-5)
общее рабочих- 1/6
1/x + 1/(x-5) = 1/6
(2x-5)/(x*2-5x)=1/6
6(2x-5x)=x*2-5x
x*217x+30=0
d=169
x=[15; 2]
первый рабочий =15, второй=10.