Первое слагаемое разложим как разность квадратов, а второе - разложим на множители: (х-7)²(x+7)² x²+4x-21 = 0 Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=4^2-4*1*(-21)=16-4*(-21)=16-(-4*21)=16-(-84)=16+84=100; Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√100-4)/(2*1)=(10-4)/2=6/2=3; x₂=(-√100-4)/(2*1)=(-10-4)/2=-14/2=-7. Поэтому многочлен х²+4х-21=(х-3)(х+7). Исходное уравнение примет вид: (х-7)²(x+7)²+(х-3)²(х+7)². Выносим (х+7)² за скобки: (х+7)²((х-7)²+(х-3)²)=0. Произведение равно нулю, когда один или все множители равны 0. (х+7)²=0 х+7 = 0 х = -7. Второй множитель не может быть равен 0. ответ: х = -7..
mmihail146
30.07.2022
1) Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого выражения на второе плюс квадрат второго выражения.
(a+b)^2 = a^2+2ab+b^2
2) Квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение первого выражения на второе плюс квадрат второго выражения.
(a-b)^2 = a^2-2ab+b^2
3) Разность квадратов двух выражений равна произведению разности самих выражений на их сумму.
a^2–b^2 = (a–b)(a+b)
4) Куб суммы двух выражений равен кубу первого выражения плюс утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.
(a+b)^3 = a^3+3a^2b+3ab^2+b^3
5) Куб разности двух выражений равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.