Складываем оба уравнения, получим:
x² - 2 * x * y + y² = 1.
Разложим по формуле квадрата разности, получим:
(x - y)² = 1,
x - y = 1,
x - y = -1.
Вычитаем из первого системного уравнения второе, получим:
x² - y² = 3.
Разложим как разность квадратов, получим:
(x - y) * (x + y) = 3.
Следовательно, получим две системы уравнений:
1. (x - y) * (x + y) = 3 и x - y = 1,
x + y = 3 и x - y = 1.
Складываем почленно:
2 * x = 4, откуда х = 2,
y = x - 1 = 2 - 1 = 1.
2. (x - y) * (x + y) = 3 и x - y = -1,
x + y = -3 и x - y = -1,
2 * x = -4,
x = -2,
y = x + 1 = -2 + 1 = -1.
ответ: (2; 1) и (-2; -1).
если скорость велосипедиста в первый день была х, то время, которое он затратил было 98/х
во второй день его скорость была х+7, а время 98/(х+7) и еще 7 часов, что он отдыхал в дороге.
Получается уравнение:
98/х=7+98/(х+7)
поскольку уравнение можно сократить на 7, я это и делаю, чтобы легче решать
14/х=1+14/(х+7)
приводим к общему знаменателю, переносим все в левую часть:
(14х+98-14х-x^2-7x)/(x^2+7x)
х≠0 x≠-7
14х+98-14х-x^2-7x=0
98-x^2-7x=0
Решаем кв. уравнение
√D=21
x1=7
x2=-14 скорость не может быть отрицательной
Проверяем:
98/7=7+98/14
14=14 правда
ответ 7 км/час
Поделитесь своими знаниями, ответьте на вопрос:
Может ли число, записываемое при 100 нулей, 100 единиц и 100 двоек, быть точным квадратом?