Смирнов_Андрей691
?>

Под корнем 25х(в третьей)у(в седьмой) . вынести множитель из под корня

Алгебра

Ответы

ВитальевичЕвгеньевич346
ответ-----/-------/---------/-----
Под корнем 25х(в третьей)у(в седьмой) . вынести множитель из под корня
Карева Даниил1537
\bigg ( \dfrac{3}{4} \bigg ) ^{x - 1} \cdot \bigg ( \dfrac{4}{3} } \bigg)^ \dfrac{1}{x} } \geq \dfrac{9}{16} \\ \\ \
\bigg ( \dfrac{3}{4} \bigg ) ^{x - 1} \cdot \bigg ( \dfrac{3}{4} } \bigg)^ {-\dfrac{1}{x} } \geq \bigg ( \dfrac{3}{4} \bigg )^2 \\ \\ 
\bigg ( \dfrac{3}{4} \bigg ) ^ {x - 1 - \dfrac{1}{x} } \geq \bigg ( \dfrac{3}{4} \bigg )^2
Основание меньше 1, поэтому меняем знак на противоположный:
x - 1 - \dfrac{1}{x} \leq 2 \\ \\ 
 x - 3 - \dfrac{1}{x} \leq 0 \\ \\ 
 \dfrac{x^2 - 3x - 1}{x} \leq 0
x² - 3x - 1 = 0
D = 9 + 4 = 13
x₁ = (3 + √13)/2
x₂ = (3 - √13)/2
Нули числителя:
x = (3 - √13)/2; (3 + √13)/2; 
Нули знаменателя:
x = 0
||||||||||||||||||||||                            ||||||||||||||||||||||||||||||||||||||
-------[ (3 - √13)/2]-----------------(0)---------------------[(3 + √13)/2]--------------> x
    -                             +                         -                                           + 

ответ: x ∈ [-∞; (3 - √13)/2; ] U (0; (3 + √13)/2]. 
Goldglobe
X² + xy = 12
xy - y² = 2       |·6

x² + xy = 12
6xy - 6y² = 12

Вычитаем из первого второе:
x² - 5xy + 6y² = 0       |:y²
x²/y² - 5x/y + 6 = 0
Пусть t = 5xy
t² - 5t + 6 = 0
t² - 2t - 3t + 6 = 0
t(t - 2) - 3(t - 2) = 0
(t - 3)(t - 2) = 0
t = 2; 3
Обратная замена:
1) x/y = 2
x² + xy = 12

x = 2y
x² + xy = 12

x = 2y
4y² + 2y² = 12

x = 2y
6y² = 12

x = 2y
y² = 2

x = 2√2
y = √2
или
x = -2√2
y = -√2

2) x/y = 3 
x² + xy = 12

x = 3y
9y² + 3y² = 12

x = 3y
12y² = 12

x = 3y
y² = 1

x = 3
y = 1
или
x = -3
y = -1 

ответ: (-3; -1), (-√2; -2√2), (√2; 2√2), (3; 1).

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Под корнем 25х(в третьей)у(в седьмой) . вынести множитель из под корня
Ваше имя (никнейм)*
Email*
Комментарий*