Квадратичную функцию можно задать уравнением
y = a(x - x₀)² + y₀ , где x₀, y₀ -
координаты вершины параболы A(x₀; y₀)
1) A (0;1) ⇒ x₀ = 0; y₀ = 1
y = a(x - 0)² + 1; ⇒ y = ax² + 1
B (1;3) ⇒ 3 = a·1² +1
a = 2 ⇒ y = 2x² + 1
Через точку В проходит единственная парабола
2) A (8;1) ⇒ x₀ = 8; y₀ = 1
y = a(x - 8)² + 1
B (5;-2) ⇒ -2 = a·(5-8)² +1 ⇒ 9a = -3
a = -1/3 ⇒ y = -1/3 · (x - 8)² + 1
Через точку В проходит единственная парабола
3) A (2;4) ⇒ x₀ = 2; y₀ = 4
y = a(x - 2)² + 4
B (0;0) ⇒ 0 = a·(0-2)² + 4 ⇒ 4a = -4
a = -1 ⇒ y = - (x - 2)² + 4
Через точку В проходит единственная парабола
Поделитесь своими знаниями, ответьте на вопрос:
Решите систему уравнений. 5x + 7y=-2.2x- 7y=23. .
ответ:3
Объяснение:
5x+7y=-2
2x-7y=23
Плюсуем два уравнения , 7у и -7у сокращаем
5х = -2
+
2х = 23
7х = 21
х = 3