Marianna45
?>

Какое из следующих выражений верно а) перпендикулярные отрезки всегда имеют общую точку б) перпендикулярные лучи всегда имеют общую точку в) перпендикулярные прямые всегда имеют общую точку г) перпендикулярные луч и отрезок всегда имеют общую точку

Алгебра

Ответы

btatarintsev
Перпендикулярные луч и отрезок
motor2218
1. у = (15-х) / 2
чтобы (у) было целым, (15-х) должно быть четным
15-х = 2(к+1) = 2к+2   и   15-х = -2к-2
х = 13-2к   и   17+2к, где к=0,1,2,3...
подставив эти выражения в выражение для (у), найдем и формулу для (у)...
(13-2к; к+1) и (17+2к; -к-1), где к=0,1,2,3...
2. х = (17-у) / 6
чтобы (х) было целым, (17-у) должно быть кратно 6
17-у = 6(к+1) = 6к+6   и   17-у = -6к-6
у = 11-6к   и   23+6к, где к=0,1,2,3...
подставив эти выражения в выражение для (х), найдем и формулу для (х)...
(к+1; 11-6к) и (-к-1; 23+6к), где к=0,1,2,3...
Sergei Gaishun
Квадратные уравнения решаются очень легко.
Самый классический их решения, через дискриминант.

Во первых надо знать, что Квадратное уравнение имеет 2 корня (основная теорема алгебры).

Во вторых надо знать, что если число (дискриминант) под корнем отрицательно, то решения у уравнения нет.

В общем виде, квадратное уравнение выглядит так:
ax^2+bx+c=0

При этом a \neq 0, так как уравнение обращается в линейное.

Поначалу находят дискриминант:
D=b^2-4ac
Если D\ \textless \ 0 уравнение не имеет решений (вообще имеет, но это в школе не проходят).
Если  D=0 то уравнение имеет 1 решение (корень).
Если D\ \textgreater \ 0- уравнение имеет 2 корня.

После того как ты нашел сам дискриминант, используешь следующую формулу:
x_{1,2}= \frac{-b\pm \sqrt{D} }{2a}

Если не понятно.
То вот:
x_1= \frac{-b+ \sqrt{D} }{2a}
x_2= \frac{-b- \sqrt{D} }{2a}

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Какое из следующих выражений верно а) перпендикулярные отрезки всегда имеют общую точку б) перпендикулярные лучи всегда имеют общую точку в) перпендикулярные прямые всегда имеют общую точку г) перпендикулярные луч и отрезок всегда имеют общую точку
Ваше имя (никнейм)*
Email*
Комментарий*