akustov55
?>

Найди значения выражений x2−2xy+y2 и (x−y)2 и сравни их, если x=7 и y=4

Алгебра

Ответы

badalovao256
Вот решение! Все на фотографии!
Найди значения выражений x2−2xy+y2 и (x−y)2 и сравни их, если x=7 и y=4
Kondratev Ruzavina22
23.17
p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1
То есть при любых значениях х ответ будет всегда 1.

23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2
Разберем по частям 2*x^2*y^2+2
1)
2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен
2)
число 2>0, положительное число 
3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
Varagyant
Чтобы привести дроби к наименьшему общему знаменателю необходимо найти наименьшее общее кратное. Для этого:
 
1. Выпишем числа из знаменателей исходных дробей и разложим каждое из них на простые множители. 
60 = 2 * 2 * 3 * 5
540 = 2 * 2 * 3 * 3 * 3 * 5
20 = 2 * 2 * 5

Вычеркиваем все множители для 540 и 20, которые есть в разложении 60. Выделим их жирным:

540 = 2 * 2 * 3 * 3 * 3 * 5
20 = 2 * 2 * 5

2. Выписываем все множители, входящие в первое число (60):

 2 * 2 * 3 * 5

3. Домножаем на недостающие множители из разложений остальных чисел (это числа, которые не выделены жирным):

 2 * 2 * 3 * 5 * 3 * 3 = 540

Таким образом, наименьший общий знаменатель = 540. Приведем наши дроби к наименьшему общему знаменателю:

\frac{7}{60} = \frac{7*9}{60*9} = \frac{63}{540} \\\\
 \frac{13}{540} \\\\
 \frac{9}{20} = \frac{27*9}{20*27} = \frac{243}{540} \\\\

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найди значения выражений x2−2xy+y2 и (x−y)2 и сравни их, если x=7 и y=4
Ваше имя (никнейм)*
Email*
Комментарий*