marychev55
?>

Тема: «МНОГОЧЛЕНЫ» 1 Преобразовать в многочлен стандартного вида выражение: а) (3х2 – 6х - 5) + (2х2 - 3х - 4); б) (3х2 – 6х - 5) – (2х2 - 3х - 4); в) 5х (х2 - 4х + 6); г) (х – 2)(2х +3); 2 У выражение: a(3a - 2) – (a – 3)(a – 4 3 Решить уравнение: 3 х - х4 2 = 3; б) (2x−1)(х +1) =2(x2 +1) + 3

Алгебра

Ответы

olesya-cat8601

1)а 5х²-9х-9

б. х²-3х-1

в. 5х³-20х²+30х

г 2х²-х-6

2) 3а²-2а-а²+7а-12=2а²+5а-12

vorobyeva6428
1) Cosx = t
3t² - 5t -8 = 0
D = 121
t₁ = 16/6                       t₂ = -1
Cosx = 16/6                 Сosx = -1
нет решений               x = π + 2πk , k ∈ Z
2) 8(1 - Sin²x) -14Sinx +1 = 0
 8 - 8Sin²x -14Sinx +1 = 0
-8Sin²x -14Sinx +9 = 0
Sinx = t
-8t² -14t +9 = 0
решаем по чётному коэффициенту:
t = (7 +-√(49 +72))/(-8) = (7 +-11)/(-8)
t₁ = 1/2                                        t₂ =-18/8
Sinx = 1/2                                   Sinx = -18/8
x = (-1)ⁿπ/6 + nπ, n ∈ Z               нет решений.
3)5sin^2x+14 sinxcosx+8cos^2x=0 | : Сos²x ≠ 0
   5tg²x + 14tgx +8 = 0
tgx = t
5t² +14t +8 = 0
t = (-7 +-√(49 -40))/5 = (-7 +- 3)/5
t₁ = -2                                         t₂ = -4/5
tgx = -2                                       tgx = -4/5
x = -arctg2 + nπ, n ∈ Z               x = -arctg 4/5 + πk , k∈Z
4)2tgx-9ctgx +3=0 | * tgx 
   2tg²x - 9 +3tgx = 0
tgx = t
2t² + 3t -9 = 0
D = 81
t = (-3 +-9)/4
t₁ = -3                                          t₂ = 6/4 = 1,5
tgx = -3                                        tgx = 1,5
x = -arctg3 + πk , k ∈ Z                 x = arctg1,5 + πn , n ∈Z
5) sin^2x-5cos^2x=2sin2x
Sin²x - 5Cos²x - 4SinxCosx = 0 | : Cos²x ≠0
tg²x - 5 - 4tgx = 0
по т. Виета 
tgx = 5                      или                tgx = -1
x = arctg5 + πk , k ∈ Z                    x = -π/4 + πn , n ∈Z
6) 5cos2x+5=8sin2x-6sin^2x
    5( 1 - 2Sin²x) + 5 = 16SinxCosx - 6Sin²x
     5 - 10 Sin²x +5 -16SinxCosx +6Sin²x = 0
-4Sin²x - 16SinxCosx +10*1 = 0
-4Sin²x - 16SinxCosx +10(Sin²x + Cos²x) = 0
-4Sin²x -16SinxCosx +10Sin²x +10Cos²x= 0
6Sin²x -16SinxCosx + 10Cos²x = 0 
3Sin²x - 8SinxCosx +5Cos²x = 0 | : Cos²x≠0
3tg²x - 8tgx +5 = 0
tgx = (4 +-√1)/3
tgx = 4/3                                 или           tgx = 1
x = arctg4/3 + πk , k ∈ Z                          x  = π/4 + πn , n ∈Z
IrinaSolodukhina1495
3. sin^2 x + 6sin x cos x + 8 cos^2 x = 0/cos²x
tg²x+6tgx+8=0
tgx=a
a²+6a+8=0
a1+a2=-6 U a1*a2=8
a1=-4⇒tgx=-4⇒x=-arctg4+πk,k∈z
a2=-2⇒tgx=-2⇒x=-arctg2+πn,n∈z

5. 2cos^2 x – 11sin 2x = 12
2cos²x-22sinxcosx-12sin²x-12cos²x=0/cos²x
12tg²x+22tgx+10=0
6tg²x+11tgx+5=0
tgx=a
6a²+11a+5=0
D=121-120=1
a1=(-11-1)/12=-1⇒tgx=-1⇒x=-π/4+πn,n∈z
a2=(-11+1)/12=-5/6⇒tgx=-5/6⇒x=-arctg5/6+πk,k∈z

6. 2sin^2 x – 3sin 2x – 4cos 2x = 4
2sin²x-6sinxcosx-4cos²x+4sin²x-4sin²x-4cos²x=0/cos²x
2tg²x-6tgx-8=0
tg²x-3tgx-4=0
tgx=a
a²-3a-4=0
a1+a2=3 U a1*a2=-4
a1=-1⇒tgx=-1⇒x=-π/4+πk,k∈z
a2=4⇒tgx=4⇒x=arctg4+πn,n∈z

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Тема: «МНОГОЧЛЕНЫ» 1 Преобразовать в многочлен стандартного вида выражение: а) (3х2 – 6х - 5) + (2х2 - 3х - 4); б) (3х2 – 6х - 5) – (2х2 - 3х - 4); в) 5х (х2 - 4х + 6); г) (х – 2)(2х +3); 2 У выражение: a(3a - 2) – (a – 3)(a – 4 3 Решить уравнение: 3 х - х4 2 = 3; б) (2x−1)(х +1) =2(x2 +1) + 3
Ваше имя (никнейм)*
Email*
Комментарий*