ambiente-deco516
?>

Решите систему уравнений методом подстановки x^2-xy=1 y-x=1

Алгебра

Ответы

zaretskaya37
X^2-xy=1
y=1+x дальше подставляем значение

x^2-x (1+x)=1
x^2-x-x^2-1=0
x=-1
y=0

Вроде так
egornostaeva
1. log(0.1, x^2 + x - 2) > log(0.1, x + 3)
0 < x^2 + x - 2 < x + 3
{ x^2 + x - 2 > 0, x^2 + x - 2 < x + 3 }
{ (x + 2)(x - 1) > 0, x^2 < 5 }
Решение первого неравенства: (-∞, -2) ∪ (1, +∞)
Решение второго неравенства: (-√5, √5)
Решение системы неравенств - пересечение этих множеств.
ответ. (-√5, -2) ∪ (1, √5).

2. 0.5^log(2, x^2 - 1) > 1
0.5^log(2, x^2 - 1) > 0.5^0
log(2, x^2 - 1) < 0
0 < x^2 - 1 < 2^0
0 < x^2 - 1 < 1
1 < x^2 < 2
x ∈ (-√2, 1) ∪ (1, √2)

3. 4log(6, 6√4) =  4log(6, 6) + 4log(6, √4) = 4 + 4log(6, 2)
Voshchula David393
1. log(0.1, x^2 + x - 2) > log(0.1, x + 3)
0 < x^2 + x - 2 < x + 3
{ x^2 + x - 2 > 0, x^2 + x - 2 < x + 3 }
{ (x + 2)(x - 1) > 0, x^2 < 5 }
Решение первого неравенства: (-∞, -2) ∪ (1, +∞)
Решение второго неравенства: (-√5, √5)
Решение системы неравенств - пересечение этих множеств.
ответ. (-√5, -2) ∪ (1, √5).

2. 0.5^log(2, x^2 - 1) > 1
0.5^log(2, x^2 - 1) > 0.5^0
log(2, x^2 - 1) < 0
0 < x^2 - 1 < 2^0
0 < x^2 - 1 < 1
1 < x^2 < 2
x ∈ (-√2, 1) ∪ (1, √2)

3. 4log(6, 6√4) =  4log(6, 6) + 4log(6, √4) = 4 + 4log(6, 2)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите систему уравнений методом подстановки x^2-xy=1 y-x=1
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Качкова1820
borisov
tatakypzova
Borshchev1820
ASRodichev
zhunina71807
blizzardtap641
Альберт Луиза1595
X^3-xy-6y^3+6x= разложить на множители
kostavaani
хаджимурод1172
tigran87-87
Мельникова
Иванович621
kobzev-e
Elenazhukovafashion7