Логарифмическая — функция, обратная потенциированию.
Построив график обратной функции и зеркально отразив его относительно прямой y = x, получим нужный нам график.
Итак, обратная к y=log2(x-2)
функция — это
x=2y+2
Строим график y=2x+2
Его можно получить из графика y=2x
смещением вверх на 2 (либо смещением оси y вниз на 2).
Это — быстровозрастающая функция, равная 1 при x = 0, стремящаяся к 0 на минус бесконечности. Располагается только в верхней полуплоскости (область значений y ≥ 0). Несколько точек для построения: x = 1, y = 2; x = 2, y = 4; x = 4, y = 16; x = -1, y = 0.5; x = -2, y = 0.25.
Отражением относительно прямой y = x получаем искомый график. y=2x +2
и заданной y=log2(x-2)
Поделитесь своими знаниями, ответьте на вопрос:
Решите 1, 2 и 3 номер. Решение полное с ответом
1. -15 ≤ 1-2у ≤ 0
2.
Объяснение:
1. Т.к. в линейном выражении 1-2у перед у стоит знак "-", то при вычислении пределов возможных значений нужно либо поменять направление знаков больше (меньше) либо поменять местами подставляемые значения 1/2 и 8.
для 1/2 ≤ у: 1-2у ≤ 0
для у ≤ 8: 1-2у ≥ -15
Тогда: -15 ≤ 1-2у ≤ 0
2. Здесь перед у знак "+", но появилась нелинейная зависимость 4/у, поэтому нужно вычислить производную функции (4/у + у) и приравнять её к нулю, чтобы найти ее экстремум.
Но так как значение -2 не попадает в наш промежуток по условию, то это значение отбрасываем.
Значит, в точке у=2 имеем экстремум. Определим его значение:
для у=2: .
На остальных участках функция либо возрастает, либо убывает. подставим граничные значения из условия:
для у=1/2 :
для у=8: .
Т.е. имеем кривую с максимумами и минимумом 4.
Тогда