0,3х - 0,4у +1,7 =0
это ответ и решение
Объяснение:
Теплохід пройшов 100 км за течією річки і 64 км проти течії , витративши на це 9 год. Знайдіть власну швидкість теплохода , якщо власна швидкість течії дорівнює 2 км/ год
- - - - - - - - - -
Теплоход км по течению реки и 64 км против течения, затратив на это 9 ч. Найдите собственную скорость теплохода, если скорость течения равна 2 км/ч
скорость теплохода → x км/ч
скорость теплохода по течению реки будет (x+2) км/ч
скорость теплохода против течению реки будет (x -2) км/ч
составим уравнение
100 / (x+2) +64 /( x- 2) = 9 ; x > 2 км/ч
100 (x- 2)+ 64( x+2) =9 (x+2) (x -2) ;
100x- 200 + 64x+128 =9 (x²- 2²) ;
164x -72 =9x² - 36 ;
9x² - 164x + 36 =0 ; D₁= D/4 =82² - 9*36 =6400 = 80²
x =( 82 ±80)/9 =162 /9 =18 (км / ч)
x =( 82 - 80)/9 =2/ 9 ( км / ч) < 2 км / ч не решение
ответ: 18 км / ч.
все таки математика настигла огромной волной и накрыла корнями и дробными степенями ???
(x)^1/n = ⁿ√x (например x^1/3 = ∛x x^1/2 = √x)
x² - y² = (x - y)(x + y)
(x + y)² = x² + 2xy + y²
(x^n)^m = x^(nn)
x^n * x^m = x^(n+m)
ⁿ√xⁿ = x (для положительных х)
x^-1 = 1/x
1. 64^1/6 = ⁶√(2⁶) = 2
2. 27 ^2/3 = ∛ 27² = ∛ (3³)² = 3² = 9
3. 0^51/4 = 0 (0 в любой положительной степени = 0)
5. x^1/2 = (x^1/4)²
(a^1/2 - b^1/2) / (a^1/4 + b^1/4) = (a^1/4 - b^1/4)(a^1/4 + b^1/4)/(a^1/4 + b^1/4) = a^1/4 - b^1/4
4. (x^1/3 + y^1/3)² - 2∛(xy) - 1/(∛y)^-2 = x^2/3 + 2x^1/3*y^1/3 + y^2/3 - 2x^1/3*y^1/3 - y^2/3 = x^2/3
^ - степень ( x^2/3 = ∛x² икс в степени две третьих)
Поделитесь своими знаниями, ответьте на вопрос:
0, 3 х - 0, 4 у= - 1, 7 решить уравнение
0
Объяснение:
если ето функция то точка (5;6), ну а если просто уравнение то ответ 0