1)если f(-x) = f(x), то f(x) -чётная; если f(-x) = -f(x), то f(x) - нечётная. Переведём на "простой язык": Если вместо "х" в функцию подставим "-х" и при этом функция не изменится, то всё. данная функция - чётная. Если вместо "х" в функцию подставим "-х" и при этом функция только поменяет знак, то всё. данная функция - нечётная. итак, наши примеры: а) эта функция - ни чётная, ни нечётная в)(х-4)(х-2) = х^2 -6x +8. данная функция у = х. Это нечётная функция. с) это чётная функция. d) это ни чётная, ни нечётная функция. е) это нечётная функция ( числитель не помняет знак, а знаменатель поменяет, значит, вся дробь поменяет знак. 2) у = -2х+1 (у = 1 это прямая параллельная оси х. Симметричные точки относительно этой прямой поменяют знак ординаты)
evgeniy1988486
24.03.2022
1) ∫x²dx = x³/3 | в пределах от 2 до 3 = 3³/3 - 2³/3 =27/3 - 8/3 = 19/3 2) сначала надо найти пределы интегрирования. Для этого решим: 4 - х² = 2 + х х² + х -2 = 0 По т. Виета х1 = -2 и х2 = 1. На чертеже парабола ветвями вниз и прямая, проходящая через общие с параболой точки (- 2; 0) и (1;3) Фигура состоит из треугольника, образованного прямой у = 2 +х и криволинейного треугольника Образованного параболой и осью х S фиг = S Δ + ∫ (4-x²) dx в пределах от 1 до 2 = = 1/2*3*3 + (4х - х³/3) в пределах от 1 до 2= = 4,5 + (4*2 -2³/3 - 4*1 + 1/3) = 4,5 +12 - 7/3 = 16,5 -2 1/3= 14 1/6
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Пож! решите уравнение относительно х 4х-b = 2x-3c !
2x= -3c+b
x=-3/2c+b/2
b∈R;c∈R