Для острых углов известно соотношение sinα<α<tgα . α=1/(n+6) стремится к 0 при n->∞.
tg1/(n+6)>1/(n+6).
Исходный ряд сравним с рядом ,общий член которого 1/(n+6).Этот ряд расходящийся, так как его можно сравнить с расходящимся обобщённо-гармоническим рядом ∑1/n : lim (1/n)/(1/n+6)=1≠0 при n->∞ ⇒ оба ряда ∑1/n и ∑1/(n+6) расходятся.
Ряд ∑1/(n+6) является минорантным, а ряд ∑tg1/(n+6) мажорантным. Из расходимости минорантного ряда следует расходимость мажорантного. ⇒∑tg1/(n+6) - расходящийся ряд.
gr1schinanata
15.05.2022
1) Пусть t=sinx, где t€[-1;1], тогда 2t^2+t-1=0 t1=(-1-3)/4=-1 t2=(-1+3)/4=1/2 Вернёмся к замене sinx=-1 x=-Π/2+2Πn, n€Z sinx=1/2 x1=Π/6+2Πm, m€Z x2=5Π/6+2Πm, m€Z ответ: -Π/2+2Πn, n€Z; Π/6+2Πm, 5Π/6+2Πm, m€Z 2) 6cos^2x+cosx-1=0 Пусть t=cosx, где t€[-1;1], тогда 6t^2+t-1=0 t1=(-1-5)/12=-1/2 t2=(-1+5)/12=1/3 Вернёмся к замене: cosx=-1/2 x=+-arccos(-1/2)+2Πn, n€Z cosx=1/3 x=+-arccos(1/3)+2Πm, m€Z ответ: +-arccos(-1/2)+2Πn, n€Z; +-arccos(1/3)+2Πm, m€Z 3) 2cos^2x+sinx+1=0 2(1-sin^2x)+sinx+1=0 -2sin^2x+sinx+3=0 Пусть t=sinx, где t€[-1;1], тогда -2t^2+t+3=0 t1=(-1-5)/-4=-1,5 посторонний, т.к. t€[-1;1] t2=(-1+5)/-4=-1 Вернёмся к замене sinx=-1 x=Π/2+2Πn, n€Z ответ: Π/2+2Πn, n€Z
Для острых углов известно соотношение sinα<α<tgα . α=1/(n+6) стремится к 0 при n->∞.
tg1/(n+6)>1/(n+6).
Исходный ряд сравним с рядом ,общий член которого 1/(n+6).Этот ряд расходящийся, так как его можно сравнить с расходящимся обобщённо-гармоническим рядом ∑1/n : lim (1/n)/(1/n+6)=1≠0 при n->∞ ⇒ оба ряда ∑1/n и ∑1/(n+6) расходятся.
Ряд ∑1/(n+6) является минорантным, а ряд ∑tg1/(n+6) мажорантным. Из расходимости минорантного ряда следует расходимость мажорантного. ⇒∑tg1/(n+6) - расходящийся ряд.