Если запись целого числа оканчивается одной из цифр 0, 2, 4, 6 или 8, а также сумма цифр в записи числа делится на 3, то такое число делится на 6.
1) Основываясь на признаке делимости на 6 получаем, что число должно быть четным, значит 1 и 5 цифры -8
2) Сумма цифр должна делиться на 3; максимальное 89998 - на 3 не делится, т.к. сумма цифр 43. Ближайшее делящееся имеет сумму цифр 42, значит нужно уменьшить одну цифру на 1. Т.к. число должно быть зеркальным, уменьшим цифру посередине - 8
В итоге - 89898
Поделитесь своими знаниями, ответьте на вопрос:
Найдите сумму чисел если ее слагаемые являются последовательными членами прогрессии 1/4+1/8+1/+1/512
Sn - ?
bn = b1 * q^(n-1) => q^(n-1) = bn/b1
q^(n-1) = 1/128
1/2^(n-1) = (1/2)^7
n - 1 = 7
n = 8
Sn = b1 * (qⁿ - 1)/(q - 1) = 1/4 * (1/256 - 1)/(1/2 - 1) = 1/4 * 2*255/256 = 255/512
ответ: 255/512