В последнее выражение все элементы входят как квадраты. Квадрат любого числа не отрицателен. В выражении нет операции вычитания, поэтому все выражение сохраняет положительное значение.
Может ли выражение стать равным 0? Нет, не может из-за области определения. Из последнего выражения видим, что для того, чтобы все выражение стало равным 0, требуется, чтобы либо tg2a стал равен 0, либо cos2a стал равен 0. Но в исходном задании указана функция ctg2a, обратная tg2a. Поэтому все значения a, при котором tg2a или ctg2a обращаются в 0, исключаются. Это автоматически исключает точки, в которых обращаются в 0 функции cos2a и sin2a.
Исходя из этого, значение выражения больше 0 при любом значении a из области определения.
nastyakrokhina87
26.05.2023
1) Просто сложим два уравнения. Получается:
x=3. Подставляем во второе уравнение. 3-y=2 очевидно, что y=1. Упор.пара: (3,1) 2)
То же самое.
y=1 Подставляем в первое уравнение. x+1=3 => x=2. (2,1) - упор.пара (если все строго). 3)
Тут на самом деле несколько вариантов элементарного решения. Я использую самый простой (но не самый короткий). Модуль дает нам этакую мини-системку для первого уравнения, в одном ур. x, в другом -x. Типа:
Только маленькая скобка не фигурная, а квадратная. Решается так - сначала подставляешь в систему первое уравнение, затем второе (по очереди). 3.1) Здесь:
подобные это б и б, а и а