aluka
?>

Какие из точек не принадлежит графику функции y=-4 1(-4; -4)2(-4; 0)3(0; -4) 4(4; -4)

Алгебра

Ответы

detymira
2-не належить до графіку функції.
1(х,у)-1(-4,-4)
3(х,у)-3(0,-4)
4(х,у)-4(4,-4)
alekseydovganich6

чтобы наи­боль­шее зна­че­ние дан­ной функ­ции было не мень­ше 1, не­об­хо­ди­мо и до­ста­точ­но, чтобы она в какой-то точке при­ня­ла зна­че­ние 1.

если наи­боль­шее зна­че­ние функции не мень­ше еди­ни­цы, то по не­пре­рыв­но­сти в какой-то точке будет зна­че­ние еди­ни­ца. если же наи­боль­шее зна­че­ние мень­ше еди­ни­цы, то зна­че­ние еди­ни­ца при­ни­мать­ся не может. значит нужно найти при каких значениях a есть корни у уравнения |x - a| = x² + 1

так как x² + 1 > 0 , то уравнение равносильно совокупности :

\left[ { {{x-a=x^{2}+1 } \atop {a-x=x^{2}+1 }} { {{x^{2}-x+1+a=0 } \atop {x^{2}+x+1-a=0 }} \right.

эта совокупность имеет решение, если:

\left \{ {{1-4(1+a)\geq0 } \atop {1-4(1-a)\geq0 }}  \{ {{1-4-4a\geq 0 } \atop {1-4+4a\geq 0 }}  \{ {{-4a\geq3 } \atop {4a\geq 3 }}  \{ {{a\leq -\frac{3}{4} } \atop {a\geq \frac{3}{4} }} \right. : (-\infty; -\frac{3}{4}]u[\frac{3}{4}; +\infty)

Yurevich1291

ответ:

 \sqrt{2 - x} + \sqrt{ - x - 1} = \sqrt{ - 5x - 7}

2 \sqrt{ - x - 2 + x {}^{2} } = - 5x - 7 - 1 + 2x

2 \sqrt{ - x - 2 + x {}^{2} } = - 3x - 8

 - 4x - 8 + 4x {}^{2} = 9x {}^{2} + 48x + 64

 - 4x - 8 + 4x {}^{2} - 9x {}^{2} - 48x - 64 = 0

 - 52x - 72 - 5x {}^{2} = 0

x = \frac{ - 26 + 2 \sqrt{79} }{5} \\ x = \frac{ - 26 - 2 \sqrt{79} }{5}

2.71206 = 1.10617 \\ 6.06435 = 6.06435

х(приблизно дорівнює)

 - 8.75528

все готово удачі там тобі надіюся що воно тобі то постав як найкращу відповідь будь-

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Какие из точек не принадлежит графику функции y=-4 1(-4; -4)2(-4; 0)3(0; -4) 4(4; -4)
Ваше имя (никнейм)*
Email*
Комментарий*