найдем производную f´(x)=( x^4-2x^2-3)´=( x^4)´-2(x^2)´-(3)´=4х³-4х-0=4х³-4х=4х(х²-1)=4х(х-1)(х+1) найдем критические точки, т.е f´(x)=0 4х(х-1)(х+1)=0 х=0 или х=1 или х=-1 ++→х f´(-2)= 4*(--+1)= 4*(-)< 0 ( нас интересует знак, а не число) f´(-0,5)= 4*(-0,,5-,5+1)= 4*(-0,,5)*0,5> 0 f´(0,5)= 4*0,5*(0,5-1)(0,5+1)=4*0,5*(-0,5)*1,5< 0 f´(2)= 4*2*(2-1)(2+1)=4*2*1*3> 0 в точке х=-1 производная меняет знак с – на +, значит это точка минимума; в точке х=0 производная меняет знак с +на -, значит это точка максимума; в точке х=1 производная меняет знак с – на +, значит это точка минимума; 2) f(x)= x^2+3x /x+4 найдем производную f´(x)=( x^2+3x /x+4)´=( x^2+3x)´(х+4)- (x^2+3x)( x+4)´/ (x+4)² =(2х+3)(х+²+3х)*1/(х+4)²=(2х²+8х+3х+12-х²-3х)/(х+4)²=(х²+8х+12)/(х+4)²=(х+2)(х+6)/(х+4)² найдем критические точки, т.е f´(x)=0 (х²+8х+12)/(х+4)²=0 х²+8х+12=0 и х+4≠0; х≠-4 д=8²-4*1*12=64-48=16; х₁=-8+√16/2=-2; х₂=-8-√16/2=-6 т.е. (х²+8х+12)/(х+4)²=(х+2)(х+6)/(х+4)², т.к. (х+4)²> 0, нас интересует только знак, поэтому рассматриваем равносильное выражение (х+2)(х+6) ++→х f´(-7)= (-7++6)=-5*(-1)> 0 f´(-5)= (-5++6)=-3*1< 0 f´(-3)= (-3++6)=-1*3< 0 f´(0)= (0+2)(0+6)=2*6> 0 в точке х=-6 производная меняет знак с + на - значит это точка максимума; в точке х=-4 производная не меняет знак ,значит это точка не является точкой экстремума ; в точке х=-2 производная меняет знак с – на +, значит это точка минимума; удачи!
Наименьшее общее кратное двух чисел - это произведение простых множителей, взятых в наибольшем количестве от одного из этих двух чисел.
НОК (a, b) = 222 = 2 · 3 · 37
Возможные варианты чисел a,b по убыванию: 222, 111, 74, 37, 6, 3, 2, 1.
Под условие a>b подходят следующие пары :
a = 222 =2·3·37 - так как 222 содержит все простые множители НОК, то число b может принимать любое значение из возможных вариантов.
a = 222; b = 111; b = 74; b = 37; b = 6; b = 3; b = 2; b = 1
a = 111 = 3·37 - не хватает множителя 2, поэтому в пару можно ставить только чётные числа из возможных вариантов.
a = 111; b = 74; b = 6; b = 2
a = 74 = 2·37 - не хватает множителя 3, поэтому в пару можно ставить только числа, кратные трём.
a = 74; b = 6; b = 3
a = 37 - не хватает множителей 2 и 3, поэтому остается один вариант
a = 37; b = 6
Всего получилось 13 пар чисел (a,b), удовлетворяющих условию :
(222; 111); (222; 74); (222; 37); (222; 6); (222; 3); (222; 2); (222; 1)
(111; 74); (111; 6); (111; 2); (74; 6); (74; 3); (37; 6)
Поделитесь своими знаниями, ответьте на вопрос:
1. в равнобедренной трапеции один из углов равен 81°. найдите остальные углы. 2. в трапеции авсd . найдите? 3. в равнобедренной трапеции угол при нижнем основании равен 60°, а основания равны 11 см и 5 см чему равен периметр трапеции. 4. в трапеции авсd из вершины угла в проведена прямая, параллельная стороне сd и пересекающая сторону аd в точке к так, что . чему равен угол d?
возьмем что угол у нижнего основания = 81, тогда угол у верхнего основания равен (360-81*2)/2=(360-162)/2=99°
ответ: два угла = 99°, два других угла = 81°
2)∠A+∠B=180º∠C+∠D=180º (как внутренние односторонние при двух параллельных прямых с секущей, отсюда следует, что ∠A=180-128=52º, а ∠D=180-115=65º 3)на фотке 4) из треугольника ABK найдем ∠AKB ∠AKB=180-∠ABK-∠A=180-35-65=100º Рассмотрим CD и BK как две параллельные прямые с секущей DA, ∠CDK=∠AKB(как соответственные углы при двух параллельных прямых с секущей). Следовательно ∠D=∠AKB=100º