Объяснение:
1.
Пусть скорость течения реки равна х. ⇒
Против течения реки скорость катера будет равна 25-х (км/ч),
а по течению реки скорость катера будет равна 25+х (км/ч). ⇒
ответ: скорость течения реки 5 км/ч.
2.
Пусть скорость течения реки равна х. ⇒
Против течения реки скорость катера будет равна 25-х (км/ч),
а по течению реки скорость катера будет равна 25+х (км/ч).
Пусть время, затраченное на путь против течения реки равно t₁, а
а время, затраченное на путь по течению реки равно t₂. ⇒
Суммируем эти уравнения:
По условию задачи на весь путь катер затратил t₁+t₂=2 (ч). ⇒
ответ: скорость течения реки 5 км/ч.
1. Пусть равное количество окуней равно х. ⇒
2. Первый рыболов поймал х+7,второй х+6, а третий х+8.
3. (x+7)+(x+6)+(x+8)=51
3x+21=51
3x=30 |:3
x=10 ⇒
ответ: первый рыболов поймал 17 окуней,
второй рыболов поймал 16 окуней,
третий рыболов поймал 18 окуней.
Объяснение:
1.
Пусть скорость течения реки равна х. ⇒
Против течения реки скорость катера будет равна 25-х (км/ч),
а по течению реки скорость катера будет равна 25+х (км/ч). ⇒
ответ: скорость течения реки 5 км/ч.
2.
Пусть скорость течения реки равна х. ⇒
Против течения реки скорость катера будет равна 25-х (км/ч),
а по течению реки скорость катера будет равна 25+х (км/ч).
Пусть время, затраченное на путь против течения реки равно t₁, а
а время, затраченное на путь по течению реки равно t₂. ⇒
Суммируем эти уравнения:
По условию задачи на весь путь катер затратил t₁+t₂=2 (ч). ⇒
ответ: скорость течения реки 5 км/ч.
1. Пусть равное количество окуней равно х. ⇒
2. Первый рыболов поймал х+7,второй х+6, а третий х+8.
3. (x+7)+(x+6)+(x+8)=51
3x+21=51
3x=30 |:3
x=10 ⇒
ответ: первый рыболов поймал 17 окуней,
второй рыболов поймал 16 окуней,
третий рыболов поймал 18 окуней.
Поделитесь своими знаниями, ответьте на вопрос:
Расставьте числа 2^1 2^2 2^3 и тд. до 2^9 в таблице 3x3 так что-бы произведение чисел стоящих в каждой строке, столбце, диагонали были равны. !
Исходя из этого нам нужно решить задачу для показателей степеней, т.е. числа от 1 до 9 расставить в таблице 3x3, так чтобы суммы чисел, стоящих в каждой строке, столбце, диагонали были равны.
1) Складываем все числа цифрового ряда и полученную сумму делим на количество цифр в 1 столбце (строке, диагонали)
(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9) : 3 = 15.
15 - это суммы чисел, стоящих в каждой строке, столбце, диагонали.
2) Расставляем цифры в числовой квадрат:
4 9 2
3 5 7
8 1 6
Это квадрат для показателей степеней.
А теперь легко получить числовой квадрат и для степеней.