Пусть х=0, тогда 3-0+11=3(0+4)-1⇒11=11, нашли число 0, которое обратило уравнение в верное равенство. Значит, 0- корень уравнения.
б) 33х=18х ⇒15х=0⇒х=0
ПОдставим, получим 33*0=18*0
Вывод х=0 - корень уравнения.
vikka30
23.12.2022
Точка x0 называется точкой максимума функции f(x), если существует такая окрестность точки x0, что для всех x ≠ x0 из этой окрестности выполняется неравенство f(x)< f(x0).Точка x0 называется точкой минимума функции f(x), если существует такая окрестность точки x0, что для всех x ≠ x0 из этой окрестности выполняется неравенство f(x)> f(x0).Точки минимума и точки максимума называются точками экстремума.Теорема. Если x0 – точка экстремума дифференцируемой функции f(x), то f ′(x0) =0.Точки, в которых функция имеет производную, равную нулю, или недифференцируема (не имеет производной), называют критическими точками. Точки, в которых производная равна 0, называют стационарными.Геометрический смысл: касательная к графику функции y=f(x) в экстремальной точке параллельна оси абсцисс (OX), и поэтому ее угловой коэффициент равен 0 ( k = tg α = 0).Теорема: Пусть функция f(x) дифференцируема на интервале (a;b), x0 С (a;b), и f ′(x0) =0. Тогда:1) Если при переходе через стационарную точку x0 функции f(x) ее производная меняет знак с «плюса» на «минус», то x0 – точка максимума.2) Если при переходе через стационарную точку x0 функции f(x) ее производная меняет знак с «минуса» на «плюс» , то x0 – точка минимума. ПРАВИЛО нахождения наибольшего и наименьшего значения функции f(x) на отрезке [a;b]. 1. Найти призводную функции и приравнять нулю. Найти критические точки.2. Найти значения функции на концах отрезка, т.е. числа f(a) и f(b).3. Найти значения функции в тех критических точках, которые принадлежат [a;b].4. Из найденных значений выбрать наибольшее и наименьшее. ПРАВИЛО нахождения минимума и максимума функции f(x) на интервале (a;b).1. Найти критические точки f(x) (в которых f ′(x)=0 или f(x) не существует) .2. Нанести их на числовую прямую (только те, которые принадлежат (a,b) ).f ′(x) + – + a x0x1 bf (x) / \ /3. Расставить знаки производной в строке f ′(x) , расставить стрелки в строке f(x).4. x max = x0, x min = x1.5. y max = y(x0), y min = y(x1).
Lazar
23.12.2022
У=5/х- 4. 1. Область определения - множество всех чисел, кроме нуля. 2. Нули функции 5/х -4 = 0, х=0,8. 3. Промежутков получается три: (-∞;0) у<0; (0;0,8)у>0; (0,8;+∞) y<0. 4.Функция убывает на каждом промежутке области определения, поэтому экстремумов нет. 5. (-∞;0) убывает, (0;+∞) убывает. 6. График функции представляет гиперболу у=5/х, смещенную на 4 единицы вниз, поэтому функция принимает все значения, кроме -4; область значений (-∞;-4)∪(-4;+∞). 7. Наибольшего и наименьшего значений нет. 8. у(-х)= -5/х-5≠у(х) и у(-х)≠-у(х). Четной или нечетной функция не является.
у=х²+4х+5. 1. Область определения (-∞;+∞). 2. Нулей нет, т.к. дискриминант отрицательный. 3 Промежуток знакопостоянства один (-∞;+∞)у>0. 4. Функция имеет минимум в точке -b/(2a)=-2. 5. (-∞;-2] ---убывает, [-2;+∞) --- возрастает. 6.7. у(-2)= 4-8+5 = 1 - наименьшее значение функции, область значений [1;+∞). 8. функция не четная ни нечетная, т.к. у(-х) = х²-4х+5. Это не равно ни у(х) ни -у(х).
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Пример, опровергающий утверждение (контрпример): а) уравнение 3х+11=3(х+4)-1 не имеет корней; б) уравнение 33х=18х не имеет корней.
а) 3х+11=3(х+4)-1
3х+11=3х+12-1
3х+11=3х+11
Это тождество, оно справедливо для любого х.
Пусть х=0, тогда 3-0+11=3(0+4)-1⇒11=11, нашли число 0, которое обратило уравнение в верное равенство. Значит, 0- корень уравнения.
б) 33х=18х ⇒15х=0⇒х=0
ПОдставим, получим 33*0=18*0
Вывод х=0 - корень уравнения.