Yuliya
?>

Укажите пять первых членов последовательности заданной формулой её n-го члена a_n=n^2-4n. с решением нужно ​

Алгебра

Ответы

galkavik

а₁=1²-4*1=-3

а₂=2²-4*2=4-8=-4

а₃=3²-4*3=9-12=-3

а₄=4²-4*4=0

а₅=5²-4*5=25-20=5

Верный ответ В.

vladimyrgorbunov
cos²x +cos²y -sin²(x+y) = 2cosx  ;
(1+cos2x)/2 +(1+cos2y)/2 -(1-cos2(x+y))/2 = 2cosx  ;
1+cos2x +1+cos2y -1+cos2(x+y) = 4cosx  ;
(1+cos2(x+y) ) +(cos2x +cos2y )= 4cosx  ;
2cos²(x+y) +2cos(x+y)cos(x-y) = 4cosx  ;
2cos(x+y)( cos(x+y)+cos(x-y)) = 4cosx ;
2cos(x+y)*2 cosx*cosy = 4cosx ;
4cosx (cos(x+y)cosy -1) =0 ;
а) cosx =0 ;
x =π/2 +πk , k∈Z .
б) cos(x+y)cosy -1 =0 ⇔ cos(x+y)cosy=1 .
б₁)  {cos(x+y) = -1 ; cosy= -1.
{ x+y =π+2πk ; y = π+2πn ⇒{x=2π(k -n) ; y = π+2πn .
б₂)  {cos(x+y) =1 ; cosy= 1 ;
{x+y =2πk ; y = 2πn ⇒{x=2π(k -n) ; y = 2πn .
fab2004
(x-2)^(x²-6x+8)>1
(x-2)^(x²-6x+8)>(x-2)⁰
1. пусть  х-2>1. x>3,
тогда  x²-6x+8>0. x²-6x+8=0. x₁=2,x₂=4
                  +               -                     +
         (2)(4)>x
x∈(-∞;2)U(4;∞)
 / / / / / / / / /                                    / / / / / / / 
(2)(3)(4)>x
                                     \ \ \ \ \ \ \  \ \ \  \ \ \ \ \ \
x∈(4;∞)
2. пусть 0<х-2<1,  2<x<3
тогда, x²-6x+8<0
x∈(2;4)
                 / / / / / / /  / / /  / / / /
(2)(3)(4)>x
              \ \ \ \ \  \ \
x∈(2;3)
ответ: x∈(2;3)U(4;∞)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Укажите пять первых членов последовательности заданной формулой её n-го члена a_n=n^2-4n. с решением нужно ​
Ваше имя (никнейм)*
Email*
Комментарий*