Решаем уравнение: проводим отбор корней на промежутке решаем равенство для 1 корня: отсюда нам подойдет n=-1; n=0; n=1 - 3 корня решим еще одно неравенство для 2 корня: отсюда нам подойдет n=-1; n=0 - 2 корня ищем среднее арифметическое: ответ:
n-896458
07.03.2021
Повозившись немного с выделением полного куба, можно заметить, что здесь выделяется множитель х+у+8, поэтому уравнение можно переписать в виде (x+y+8)((2x-y-8)²+3(y-8)²)=0. Проверяется это раскрытием скобок и делением всего уравнения на 4. Отсюда следует, что либо у=8, х=8, либо х+у=-8. Т.к. х, у - натуральные, то второе невозможно, поэтому наибольшее значение х+у=8+8=16.
По неравенству о средних при любых х,у≥0 получим (x³+y³+8³)/3≥∛(8³x³y³)=8xy. Равенство в неравенстве о средних достигается только при х=у=8. Значит x+у=8+8=16.
kengyra
07.03.2021
Повозившись немного с выделением полного куба, можно заметить, что здесь выделяется множитель х+у+8, поэтому уравнение можно переписать в виде (x+y+8)((2x-y-8)²+3(y-8)²)=0. Проверяется это раскрытием скобок и делением всего уравнения на 4. Отсюда следует, что либо у=8, х=8, либо х+у=-8. Т.к. х, у - натуральные, то второе невозможно, поэтому наибольшее значение х+у=8+8=16.
По неравенству о средних при любых х,у≥0 получим (x³+y³+8³)/3≥∛(8³x³y³)=8xy. Равенство в неравенстве о средних достигается только при х=у=8. Значит x+у=8+8=16.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите среднее арифметическое всех корней уравнения cos^2x+sinx*cosx=1, принадлежащих промежутку (-пи до пи) включительно
проводим отбор корней на промежутке
решаем равенство для 1 корня:
отсюда нам подойдет n=-1; n=0; n=1 - 3 корня
решим еще одно неравенство для 2 корня:
отсюда нам подойдет n=-1; n=0 - 2 корня
ищем среднее арифметическое:
ответ: