ответ: x=4.
Объяснение:
Так как log4(x)=log2(x)/log2(4)=1/2*log2(x), а 1/2*log2(x)=log2(√x), то данное уравнение можно записать в виде: log2(x-2)=log2(√x). Оно приводится к уравнению x-2=√x (*), но так как выражения x-2 и √x находятся под знаком логарифма, то к этому уравнению добавляются условия:
x-2>0
√x>0
Решая эту систему неравенств, находим √x>√2 (**) и переходим к решению уравнения (*). Возводя обе его части в квадрат и приводя подобные члены, приходим к квадратному уравнению x²-5*x+4=0, которое имеет решения x1=4, x2=1. С учётом условия (**) окончательно находим x=4.
Дано: bn - геометрична прогресія;
b1 = 1, q = 1/3;
Знайти: S6 -?
Формула члена геометричної прогресії: bn = b1 * q ^ (n - 1),
де b1 - перший член геометричної прогресії, q - її знаменник, n - кількість членів прогресії.
Обчислимо за до цієї формули шостий член заданої прогресії:
b6 = b1 * q ^ (6 - 1) = b1 * q ^ 5 = 1 * (1/3) ^ 5 = 243;
Сума перших n членів геометричної прогресії знаходиться за формулою:
Sn = bn * q - b1 / (q - 1);
Т.ч. S6 = b6 * q - b1 / (q - 1) = 243 * 1/3 - 1 / (1/3 - 1) = (81 - 1) / (-2/3) = -240 / 2 = -120 .
Відповідь: S6 = -120.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Найдите наибольшее значение выражения 1+12х-9х²
x=>-2
x=>3
x=>2
x=>3
а)х²+3>0 ⇒ х любое число,т,к х² всегда положительное
б)-х²-2≤0 ⇒-х²≤2 тоже любое,так как -х² всегад отрицательное
в)х²-4х+7≤0 нет решений,так как дискриминант <0,и при любых х левая часть положительная
г)-х²-4х≥0 ⇒ -х(х+4)≥0 ⇒ система х≤0 и х+4≥0 ⇒-4≤х≤0
система х≥0 и х+4 ≤0 ⇒ нет решений
значит -4≤х≤0
д)3х²-10х+4<1 ⇒ 3х²-10х+3<0 дискриминант равен Д=100-4*3*3=64
х₁=(10+8)/6=3 -∞ 2/6 3 +∞
х₂=(10-8)/6=2/6 || ответ 2/6< х<3
- + -