-3/8.
Объяснение:
1) x²-4ax+5a=0
Если х1 и х2 - корни уравнения, то по теореме Виета
х1 + х2 = 4а и х1•х2 = 5а.
2) Сумма квадратов двух корней уравнения
(х1)^2 + (х2)^2 =(х1 + х2)^2 - 2•х1•х2 = (4а)^2 - 2•5а = 16а^2 -10а.
По условию эта сумма равна 6, тогда
16а^2 -10а = 6
16а^2 -10а - 6 = 0
8а^2 - 5а - 3 = 0
D = 25 -4•8•(-3) = 25 + 96 = 121
a =(5±11):16
a1 = 1
a2 = -6:16 = -3/8
3) Проверим, что при найденных значениях уравнение имеет два различных действительных корня.
✓При а=1 уравнение примет вид x²-4x+5=0. Дискриминант отрицательный, уравнение корней не имеет.
✓При а= -3/8 уравнение примет вид
x^2 -4•(-3/8)x+5•(-3/8)=0
х^2 +3/2•х - 15/8 = 0
8х^2 + 12х - 15 = 0
D =144 + 4•8•15 = 144+480=624>0, уравнение имеет два различных корня
ответ: -3/8.
1) 8х + 1,3 = 34,9 - 8х 2) -4 = -2/8х
8х + 8х = 34,9 - 1,3 х = -4 : (-2/8)
16х = 33,6 х = 4 · 8/2
х = 33,6 : 16 х = 2 · 8
х = 2,1 х = 16
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3) 9х = 108 4) 6х - 8 = 6,4
х = 108 : 9 6х = 6,4 + 8
х = 12 6х = 14,4
х = 2,4
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
5) 4(х - 2) = -1 6) 40х = -32
4х - 8 = -1 х = -32 : 40
4х = 8 - 1 х = -0,8
4х = 7
х = 7/4
х = 1 целая 3/4 = 1,75 (в десятичных дробях)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
7) 4х - 2 = 22 8) 5х - 13 + 2(3 - х) = -х + 16
4х = 22 + 2 5х - 13 + 6 - 2х = -х + 16
4х = 24 5х - 2х + х = 16 - 6 + 13
х = 24 : 4 4х = 23
х = 6 х = 23/4 = 5 целых 3/4 = 5,75
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9) 4(3х + 5) - 3(4х - 1) = 22х + 12
12х + 20 - 12х + 3 = 22х + 12
12х - 12х - 22х = 12 - 3 - 20
-22х = -11
х = -11 : (-22)
х = 1/2 = 0,5 (в десятичных дробях)
Поделитесь своими знаниями, ответьте на вопрос:
30 ! представьте в виде многочлена стандартного вида произведение разности 3a-5b и суммы 3a+5b
это по формуле сокращенного умножения:
a²-b²=(a-b)(a+b)